Complex plane: algebraic and geometric properties.
Monday, December 7, 2020 9:01 AM

Complex numbers as vectors. Addition and multiplication

$$
\begin{aligned}
& Z=a+i b \rightarrow\binom{a}{b} \sim\binom{0}{1} \quad 1 \sim\binom{1}{0} \\
& \text { Notation: } \begin{array}{l}
a=\operatorname{Rer} \\
b=\operatorname{Imz}
\end{array} \quad \mathbb{R}^{2} \text { with addition and multiplication } \\
& \mathbb{R} \text { identified with }\left\{\binom{a}{0}: a \in \mathbb{R}\right\} \text {. } \\
& \xrightarrow{\text { \& Partly }} \underset{\text { Real line }}{\substack{\text { ingeinary } \\
\text { line }}}
\end{aligned}
$$

Addition: usual Vector addition: $(a+i b)+(c+i d)=(a+c)+i(b+d)$

$$
\binom{a}{b}+\binom{c}{d}=\binom{a_{1}+}{b+d}
$$

Multiplication: $(a+i b)(c+i d)=(a c-b d)+i(a d+b c)$

$$
\binom{a}{b} \cdot\binom{c}{d}=\binom{a c-b d}{a d+b c} \quad\binom{0}{1} \cdot\binom{0}{1}=\binom{-1}{0} .
$$

Notation: $\mathbb{C}:=\mathbb{R}^{2}$ with addition and multiplication.

Absolute value and conjugate
$\operatorname{Re} z=\frac{z+\bar{z}}{2}, \quad \operatorname{Im} z=\frac{z-\bar{z}}{2 i}=-\frac{i}{2}(z-\bar{z})$.
An example: Line $\begin{array}{ll}a x+b y=c \quad & x=\frac{z+\bar{z}}{2} \\ a^{2}+b^{2} \neq 0\end{array} \quad y=\frac{z-\bar{z}}{2 i} \quad \frac{a-i b}{2} z+\frac{a+i b}{2} \bar{z}=c$
Properties

$$
\text { 1) } \overline{z+w}=\bar{z}+\bar{w} \quad \mu z+\bar{\mu} \bar{z}=c \quad \mu \neq 0 \quad \mathbb{R}
$$

2) $\overline{z w}=\bar{z} \bar{w}$ just computation
$\frac{\text { Absolute value: }}{\mid z^{1^{2}}=x^{2}+y^{2}=(x+i y)(x-i y)=z \bar{z}}$
Properties: \mid. $|z+w| \leq|z|+|w|$
2. $|z w|=|z||w|$.

Proof. 1. The usual triangle inequality.

$$
\text { Notations: } \begin{aligned}
& B(z, \delta)=\{w:|z--|<\delta\}_{\text {open }} \\
& B(z, s)=\{w:|z-w| \leq s|-c| \text { posed }
\end{aligned}
$$

Complex numbers form a field.
(PI) (Associative law for addition) $a+(b+c)=(a+b)+c$
(P2) (Existence of an additive $a+0=0+a=a$. identity)
(P3) (Fxistence of additive inverses) $a+(-a)=(-a)+a=0$.
(P4) (Commutative law for addition) $a+b=b+a$.
(P5) (Associative law for multiplica: $a \cdot(b \cdot c)=(a-b) \cdot r$. ton)
(P6) (Existence of a multiplicative $\quad a-1=1 \cdot a=a ; 1 \geqslant 0$. identity)
(P7) (Existence of multiplicative $a^{+}+a^{-1}=a^{-1} \cdot a=1$, for $a \neq 0$.
inverses) inverses)
(P8) (Commutative law for multi- $\quad a \cdot b=b \cdot a$. plication)
(P9) (Distributive law) $\quad a \cdot(b+c)=a \cdot b+a \cdot c$.

$$
\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}<z \bar{z}=|z|^{2}
$$

$$
\frac{w}{z}=\frac{w \bar{z}}{|z|^{2}}
$$

Matrix form of a Complex Number.
Fix $z=a+i b$. Map $w=x+i y \rightarrow z(x+i y)$ in vector form

$$
\binom{x}{y} \rightarrow\binom{a x-b y}{b x+a y}=\left(\begin{array}{cc}
a-b \\
b & a
\end{array}\right)\binom{x}{y}
$$

$M_{z}:=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right) \quad M_{z} \cdot w=z w$
More over: $M_{z}+M_{w}=\left(\begin{array}{cc}a & -6 \\ b & a\end{array}\right)+\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right)=\left(\begin{array}{cc}a+x & -b-y \\ b+y & a+x\end{array}\right)=M_{z+w}$

$$
M_{z} \cdot M_{w}=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right)=\left(\begin{array}{cc}
a x-b y & -b x-a y \\
b x+a y & a x-b y
\end{array}\right)=M_{-2}
$$

$L e+M A=\left\{\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right), a, b \in \mathbb{R}\right\}$.

Then $\varphi:\left(\mathbb{C} \rightarrow \mu, \phi(z):=M_{z}\right.$-field isomorphism (bijection prese v ing and $\left.x\right)$. What is $M_{\bar{z}}$? $M_{z}^{\top} \quad M_{z}=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right), M_{z}^{\top}=\left(\begin{array}{cc}a & l \\ -l_{a}\end{array}\right)=M_{\bar{z}}$.
Remark. $z \rightarrow \bar{z}$ - I linear map. What is the matrix?

Polar form of a Complex Number

$$
\begin{aligned}
& z \text { in polar form :(|z|, } \hat{\theta}) \theta \text {-angle with } \mathbb{R}_{+} \\
& \text {Real case: }(r, \theta) \leadsto\binom{r \cos \theta}{r \sin \theta} \\
& \text { Complex notation: } z=|z|(\cos \theta+i \sin \theta) \text {. }
\end{aligned}
$$

Temporary notation: $\operatorname{cis} \theta:=\cos \theta+i \sin \theta \quad$ ($\left.e^{i \theta}-l a t e r\right)$.
$|\operatorname{cis} \theta|=1$.
$z=$ absolute value $|z|$
Principal value of argument: $-\pi<\operatorname{Arg} z \leq \pi$
$\arg \bar{z}=-\arg z=\{\theta:-\theta \in \arg z\}$
2 arg - well defined.

$$
\frac{\arg z^{2}}{2}-\text { is not! }
$$

Rotation as a multiplication.
Rotation of \mathbb{R}^{2} - linear map.
Matrix: $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)=M_{\operatorname{cis} \theta}$

$\operatorname{cis} \theta \cdot w=M_{\operatorname{cis}-\theta} w-w$ rotated by θ. arg cis $\theta w=\arg w+\theta$
$\begin{array}{rr}z=|z| \operatorname{cis}(\arg z) . & z w=|z| \operatorname{cis}(\arg z) w . \\ \left.\forall \theta_{1}, \theta_{2} \in \arg z, c_{i}\right) \theta_{1}=\operatorname{cis} \theta_{2} . & z \text { rotated by arg } \\ \text { dilated by }|z|\end{array}$

Proof. 1) just done
2) $\arg \frac{1}{w}=\arg \frac{\bar{w}}{|w|^{2}}=-\arg w,(\arg w+\arg \bar{w}=\arg 1) d$
N.B. Argzw=Argz+Argw-not always! Example?
$z=w=-i \quad$ Arg $z=\operatorname{Argw}=-\frac{\pi}{2}$
-...

I

$$
\begin{array}{ll}
z=w=-i & \operatorname{Argz}=\operatorname{Argw}=-\frac{\pi}{2} \\
z w=-1 & \operatorname{Arg-1}=\pi \pm-\frac{\pi}{2}+\left(-\frac{\pi}{2}\right) .
\end{array}
$$

Trigonometry done right: deMoivre formula

$$
\operatorname{cis}\left(\theta_{1}+\theta_{2}\right)=\operatorname{cis} \theta_{1} \cdot \operatorname{cis} \theta_{2} \quad \frac{\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)=\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right)}{d e \text { Moivre formula }}
$$

$$
\cos \left(\theta_{1}+\theta_{2}\right)=\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}
$$

$$
\sin \left(\theta_{1}+\theta_{2}\right)=\cos \theta_{1} \sin \theta_{2}+\sin \theta_{1} \cos \theta_{2}
$$

$$
\cos n \theta=\frac{1}{2}\left(\operatorname{cis}^{n} \theta+\overline{\operatorname{cis}^{n} \theta}\right)=\frac{1}{2}\left((\cos \theta+i \sin \theta)^{n}+(\cos \theta-i \sin \theta)^{n}\right)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k} C_{n}^{2 k} \sin ^{2 n} \theta \cos ^{n-2 x} \theta
$$

$$
\sin n \theta=-\frac{i^{2}}{2}\left((\cos \theta+i \sin \theta)^{n}-(\cos \theta-i \sin \theta)^{n}\right)=\sum_{k=0}^{\left\langle\frac{n-1}{2}\right\rfloor}(-1)^{k} C_{n}^{2 k+1} \sin ^{k+0} 0^{k+1} \theta \cos ^{n-1-2 k} \theta
$$

Powers and Roots
Integer powers: $\quad z^{n}=|z|^{n}$ cis (nargz). $n \in \mathbb{N}, n \in \mathbb{Z}$

$$
\begin{aligned}
& i^{239}=1 \cdot \operatorname{cis}\left(239 \cdot \frac{\pi}{2}\right)=\operatorname{cis} \frac{3 \pi}{2}=-i . \\
& (1+i)^{239}=(\sqrt{2})^{139} \operatorname{cis}\left(239 \frac{\pi}{4}\right)=\sqrt{2} \cdot 2^{119} \cdot \operatorname{cis} \frac{7}{4} \pi=2^{119}(1-i)
\end{aligned}
$$

Roots of 1. $z^{n=1 .}\left\{\begin{array}{l}n \operatorname{Argz} \in\{2 \pi k, k \in \mathbb{Z}\} \text {. } \\ |z|=1\end{array}\right.$

$$
\omega_{n}:=\operatorname{cis}\left(\frac{2 \pi}{n}\right) . \underline{\text { Solutions }}: 1, \omega_{n}, \omega_{n}^{2}, \ldots, \omega_{n}^{n-1} .\left\{\begin{array}{l}
\arg \omega_{n}^{n-1}= \\
\omega_{n}^{2}
\end{array} \frac{2 \pi(n-1)}{n}+2 \pi k\right\}
$$

Roots of Unity

$h t h$ roots of $w \neq 0$: $\quad z^{n}=w$.
z_{1}, z_{2}-two roots. Then $\left(\frac{z_{1}}{z_{1}}\right)^{n}=\frac{w}{w}=1.20 \frac{z_{1}}{z_{2}}-\operatorname{root}$ of 1 !
$20: n$ roots $z_{0}, z_{0} \omega_{n}, \ldots, z_{0} \omega_{n}^{n-1}$
$\left|z_{0}\right|=\mid w_{1} / n . n A r g z_{0} \in \arg w$.
nth Roots of Complex Numbers

$\omega=|w|(\cos \varphi+i \sin \varphi)$
can take

$$
z_{0}=|v|^{1 n}\left(\cos \frac{\varphi}{n}+i \sin \frac{\varphi}{n}\right)
$$

