## Complex Analysis

Assignment 8, due April 1
Problem 1 of 5. Use the cotangent trick to compute

$$
\sum_{n=1}^{\infty} \frac{1}{n^{6}+n^{2}}
$$

Be careful at $z=0$ !

## Problem 2 of 5.

(1) Let $u, v$ be two subharmonic functions in $\Omega$. Show that $\max (u, v)$ is also subharmonic in $\Omega$.
(2) Show that if a non-constant $u \in \operatorname{Harm}(\Omega)$, then $u$ can not have local maxima or minima inside $\Omega$.
(3) Give an example of non-constant bounded subharmonic function $v$ in the unit disk (i.e. a bounded subharmonic function such that for some $\left.z_{1}, z_{2} \in \mathbb{D}, v\left(z_{1}\right) \neq v\left(z_{2}\right)\right)$ which ahs a local maximum in $\mathbb{D}$.

Problem 3 of 5. Problem 2, page 166 of Ahlfors.
Problem 4 of 5. Problems 1-2, page 171 of Ahlfors.
Problem 5 of 5. Let $f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ be an analytic function in $\mathbb{C} \backslash\{0\}$. Assume that

$$
\forall N \in \mathbb{N} \exists m>N, n>N: a_{n} \neq 0, a_{-m} \neq 0 .
$$

Let $M(r):=\max _{|z|=r}|f(z)|$. Show that for any $k \in \mathbb{N}$

$$
\lim _{r \rightarrow 0} \frac{1}{r^{k} M(r)}=\lim _{r \rightarrow \infty} \frac{r^{k}}{M(r)}=0
$$

