Problem 1 of 5. Problems 1 and 2, page 133.

Problem 2 of 5. Let f be analytic in the region $\{z : |z| > R\}$. Assume that $\lim_{|z|\to\infty} f(z)$ exists and finite. Let, for r > R, $M(r) := \max_{|z|=r} |f(z)|$. Show that M(r) is a decreasing function.

Hint: Consider f(1/z).

Problem 3 of 5. Let P be a polynomial of degree d, $M(r) := \max_{|z|=r} |P(z)|$. Show that for any $0 < r_1 < r_2$, we have

$$\frac{M(r_1)}{r_1^d} \ge \frac{M(r_2)}{r_2^d}.$$

The equality is attained for some $0 < r_1 < r_2$ if and only if $P(z) = cz^d$ for some $c \neq 0$.

Problem 4 of 5.

- (1) Let f and g be two analytic maps of the unit disk. Assume that g is conformal (analytic and injective), that $f(\mathbb{D}) \subset g(\mathbb{D})$, and that f(0) = g(0). Show that for any $r \leq 1$, $f(r\mathbb{D}) \subset g(r\mathbb{D})$ and that $|f'(0)| \leq |g'(0)|$. **Hint:** Consider the function $h := q^{-1} \circ f$.
- (2) Let h be an analytic and bounded by 1 function in the unit disk. Show that for all z, 0 < |z| < 1, we have

$$|f(z) - f(0)| \le |z| \frac{1 - |f(0)|^2}{1 - |f(0)||z|}$$

For which f can the equality be attained? Hint: Use the previous part with the function $g(z) = (z + f(0))/(1 + \overline{f(0)}z)$.

Problem 5 of 5.

- (1) A region Ω is called *star-shaped* if there exists a point $z_0 \in \Omega$ such that for any other point $z \in \Omega$, the segment $[z_0, z]$ is a subset of Ω . Prove that Ω is simply connected.
- (2) A region Ω is called *almost convex* if if for any point $z \notin \Omega$ one can find a ray $l \subset \Omega^c$ such that $z \in l$. Prove that Ω is simply connected.