Complex Analysis

Assignment 5, due March 11

Problem 1 of 5. Let f be an entire function.

(1) Assume that an f satisfies the condition

$$|f(z)| \le C|z|^d, \quad |z| > R,$$

where C and R are some positive constants. Show that f is a polynomial of degree at most d.

Hint: Use Cauchy Inequities to estimate $f^{(d+1)}(0)$.

(2) Assume that f has a removable singularity or pole at infinity (i.e. the limit lim_{z→∞} f(z) exists, but might be infinite). Show that f is a polynomial.
Hint: It might be useful to consider the function f(1/z) at 0

Problem 2 of 5. Assume that f is a continuous function on the closed disk $\overline{B(z_0, r)}$ which is analytic on the open disk $B(z_0, r)$. Prove that

$$f(z) = \frac{1}{2\pi i} \oint_{C_r} \frac{f(\xi)}{\xi - z} d\xi$$

where C_r is the positively oriented circle of radius r centered at z_0 and $|z - z_0| < r$. Be careful: you cannot assume that f is analytic in the closed disk $\overline{B(z_0, r)}$.

Problem 3 of 5. A function $f; \mathbb{R} \to \mathbb{C}$ is called *real-analytic* on \mathbb{R} if for any $x \in \mathbb{R}$ there exists $R_x > 0$ and a sequence of coefficients $(a_n^x)_{n=0}^{\infty}$ such that

$$f(y) = \sum_{n=0}^{\infty} a_n^x (y-x)^n$$
, if $|y-x| < R_x$.

Let f be a real analytic function.

- (1) Show that there exists a region $\Omega \supset \mathbb{R}$ and a function F, analytic in Ω , such that for any $x \in \mathbb{R}$, f(x) = F(x).
- (2) Show that f is infinitely differentiable for any $x \in \mathbb{R}$, and $a_n^x = \frac{f^n(x)}{n!}$.
- (3) Show that if (x_n) is a bounded real sequence, and for any n, $f(x_n) = 0$, then $f \equiv 0$.

Problem 4 of 5. Problem 5, page 130 of Ahlfors.

Problem 5 of 5. Problem 6, page 130 of Ahlfors.