Complex Analysis Assignment 3, due February 4

Problem 1 of 5. Determine the radius of convergence of each of the following series:

- (1) $\sum_{n=1}^{\infty} \left(\frac{7n^4+2n^3}{3n^4+2n}\right) z^n$
- (2) $\sum_{n=1}^{\infty} (n^2 + a^n) z^n, a \in \mathbb{C}$
- (3) $\sum_{n=1}^{\infty} (\sin n) z^n$

Problem 2 of 5. Let $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=0}^{\infty} b_n z^n$ be two power series with the radii of convergence R_1 and R_2 correspondingly. Prove that

- (1) The radius of convergence R of the series $\sum_{n=0}^{\infty} (a_n + b_n) z^n$ satisfies $R \ge \min(R_1, R_2)$ and that equality holds if $R_1 \ne R_2$.
- (2) The radius of convergence R of the series $\sum_{n=0}^{\infty} (a_n b_n) z^n$ satisfies $R \ge R_1 R_2$.

Problem 3 of 5. Problem 8, page 41 of Ahlfors.

Problem 4 of 5. Problem 4, page 44 of Ahlfors.

Problem 5 of 5. Problem 6, page 47 of Ahlfors.