Complex Analysis

Assignment 2, due January 28

Problem 1 of 5. Let g be a continuous function on a disk $B(z_0, r)$, and f be a complexdifferentiable function at the point $g(z_0)$, which satisfies the relation f(g(z)) = z for all $z \in B(z_0, r)$. Assume that $f'(g(z_0)) \neq 0$. Show that g is complex-differentiable at z_0 and

$$g'(z_0) = \frac{1}{f'(g(z_0))}$$

Problem 2 of 5. Let f be defined in some disk $B(z_0, r)$ and real-differentiable at z_0 . Assume that

$$\lim_{z \to z_0} \left| \frac{f(z) - f(z_0)}{z - z_0} \right|$$

exists. Show that either f or \overline{f} is complex-differentiable at z_0 .

Problem 3 of 5. Problem 7, page 28 of Ahlfors.

Problem 4 of 5. Problems 2 and 3 on page 32 of Ahlfors.

Problem 5 of 5. Let $\sum_{n=1}^{\infty} z_n$ be a convergent series of complex numbers.

- (1) Let $\alpha < \pi/2$. Show that if for all n, $|\operatorname{Arg} z_n| < \alpha$, then the series $\sum_{n=1}^{\infty} z_n$ converges absolutely.
- (2) Does the conclusion of the previous part hold if $\alpha = \pi/2$?
- (3) Assume that for all $n, \Re z_n \ge 0$ and that the series $\sum_{n=1}^{\infty} z_n^2$ also converges. Show that the series $\sum_{n=1}^{\infty} z_n^2$ converges absolutely.