Complex Analysis

Assignment 2, due January 28

Problem 1 of 5 . Let g be a continuous function on a disk $B\left(z_{0}, r\right)$, and f be a complexdifferentiable function at the point $g\left(z_{0}\right)$, which satisfies the relation $f(g(z))=z$ for all $z \in B\left(z_{0}, r\right)$. Assume that $f^{\prime}\left(g\left(z_{0}\right)\right) \neq 0$. Show that g is complex-differentiable at z_{0} and

$$
g^{\prime}\left(z_{0}\right)=\frac{1}{f^{\prime}\left(g\left(z_{0}\right)\right)} .
$$

Problem 2 of 5. Let f be defined in some disk $B\left(z_{0}, r\right)$ and real-differentiable at z_{0}. Assume that

$$
\lim _{z \rightarrow z_{0}}\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right|
$$

exists. Show that either f or \bar{f} is complex-differentiable at z_{0}.
Problem 3 of 5. Problem 7, page 28 of Ahlfors.
Problem 4 of 5. Problems 2 and 3 on page 32 of Ahlfors.
Problem 5 of 5. Let $\sum_{n=1}^{\infty} z_{n}$ be a convergent series of complex numbers.
(1) Let $\alpha<\pi / 2$. Show that if for all $n,\left|\operatorname{Arg} z_{n}\right|<\alpha$, then the series $\sum_{n=1}^{\infty} z_{n}$ converges absolutely.
(2) Does the conclusion of the previous part hold if $\alpha=\pi / 2$?
(3) Assume that for all $n, \Re z_{n} \geq 0$ and that the series $\sum_{n=1}^{\infty} z_{n}^{2}$ also converges. Show that the series $\sum_{n=1}^{\infty} z_{n}^{2}$ converges absolutely.

