Problem 1 of 5. Assume f is continuous on $[-1, 1]$ and differentiable on $(-1, 0) \cup (0, 1)$. If $\lim_{x \to 0} f'(x) = L$, show that $f'(0)$ exists and equals L.

Problem 2 of 5.

1. Let (f_n) be a sequence of continuous functions that converges uniformly to a function f on a compact set A. If $f(x) \neq 0$ on A, show that $(1/f_n)$ converges uniformly on A to $1/f$.

2. Give an example of a sequence (f_n) of continuous functions that converges uniformly to a function f on a $(0, 1]$, $f(x) \neq 0$ on $(0, 1]$, but $(1/f_n)$ does not converge uniformly on $(0, 1]$ to $1/f$.

Problem 3 of 5. Assume the sequence of functions $f_n(x)$ converges to a function $f(x)$ pointwise on a compact set A and assume that for each $x \in A$ the sequence $f_n(x)$ is increasing. Assume that f_n and f are continuous on A.

1. Set $g_n := f - f_n$ and translate the preceding hypothesis into statements about the sequence (g_n).

2. Let $\varepsilon > 0$ be arbitrary, and define

$$K_n := \{x \in A : g_n(x) \geq \varepsilon\}.$$

show that $K_{n+1} \subset K_n$.

3. Show that each K_n is compact.

4. Use the pointwise convergence of the sequence (g_n) to show that $\bigcap_{n=1}^{\infty} K_n = \emptyset$.

5. Conclude that for some N, $K_N = \emptyset$.

6. Derive that for $n \geq N$ and for all $x \in A$

$$|f_n(x) - f(x)| < \varepsilon.$$

This proves that (f_n) converges to f uniformly.

Problem 4 of 5. Let f be a continuous function on \mathbb{R} and let (a_n) be a real sequence converging to zero. Let the sequence of functions $(f_n(x))$ be defined by $f_n(x) := f(x + a_n)$.

1. Show that the sequence of functions $(f_n(x))$ converges to f uniformly on every bounded $A \subset \mathbb{R}$.

2. Show that if the function f is uniformly continuous on \mathbb{R}, then $(f_n(x))$ converges to f uniformly on \mathbb{R}.

3. Show that a function f is not uniformly continuous on \mathbb{R} if and only if for some sequence (a_n), $f_n(x)$ does not converge to $f(x)$ uniformly.

Hint: You can use Theorem 4.4.5.
Problem 5 of 5. Let \((f_n)\) be a sequence of bounded (not necessarily continuous functions) on \([0, 1]\).

(1) Construct such a sequence \((f_n)\) converging pointwise to an unbounded function \(f\) on \([0, 1]\).

(2) Assume that \((f_n)\) converges uniformly to a function \(f\). Show that \(f\) is also bounded.