VOLUME, DENSITY AND WHITNEY CONDITIONS

GUILLAUME VALETTE

Abstract. This paper studies the variation of the volume of a subanalytic family of sets. More precisely we are interested in the variation of the density. We prove that the density is continuous along a stratum of a Whitney subanalytic stratification and locally Lipschitz when the stratification satisfies the Kuo-Verdier condition. This problem had been studied by G. Comte in [C].

1. Introduction

The purpose of this paper is to prove that the Lelong number is continuous along the strata of a subanalytic Whitney stratification.

The idea is to give a counterpart of a well known result about complex analytic sets in the real case. A result due to Draper says that, for a complex analytic set, the Lelong number is equal to the multiplicity. On the other hand, a famous theorem of Hironaka [Hi] states that the multiplicity is constant along the strata of a Whitney stratification of a complex analytic set. In the 80’s Kurdyka and Raby [KR] extended the notion of Lelong number to the real case. Hence, the idea is also to explain that the Lelong number is a good substitute of the multiplicity for subanalytic geometry.

In [C] G. Comte proved a result in this direction: he proved that the density is continuous along a subanalytic stratification which satisfies the (w) condition of Kuo-Verdier by studying the discriminant of generic projections.

We prove in section 4.1 that the Whitney condition is sufficient to ensure the continuity of the density along strata of a subanalytic stratifications. Then we generalize our method to improve the result of [C] by showing that Kuo-Verdier condition actually implies the Lipschitzness of the density.

We show how some homeomorphisms (not necessarily bi-Lipschitz) can induce some stability for the volume of subanalytic families. Such arguments may no longer be applied to sets which are not subanalytic, the finiteness of the fibers of generic projections being essential. We give an equimultiplicity proposition and then use the Cauchy-Crofton formula which relates the multiplicity to the volume. The multiplicities are compared outside a set whose measure can be bounded. Thus we recall the Cauchy-Crofton formula and give ”some uniform bounds” for the volume of subanalytic families in section 3.

1991 Mathematics Subject Classification. 28A78, 32B10, 32B20.

This paper is partially supported by the RAAG Network Contract No. HPRN-CT-2001-00271.
2. Definitions, notations and main theorem

Notations. Throughout this paper, the letter C may stand for various strictly positive constants, when no confusion is possible.

For $r \in \mathbb{R}$, strictly positive, we denote by $B(0; r)$ the closed ball centered at 0 and of radius r, and by $S(0; r)$ the sphere of center 0 and radius r. Given $l \leq n$ we will write G^l_n for the Grassmannian of l dimensional vector subspaces of \mathbb{R}^n.

Let \mathcal{A} be a subanalytic subset of $\mathbb{R}^n \times \mathbb{R}^m$. We will consider such a subset as a family of subanalytic subsets of \mathbb{R}^n parameterized by \mathbb{R}^m. For $U \subseteq \mathbb{R}^m$ we will denote by $\mathcal{A}|_U$ the subfamily $\{q = (x; t) \in \mathbb{R}^n \times \mathbb{R}^m / q \in \mathcal{A}, t \in U\}$, and for $t \in \mathbb{R}^m$ we will denote by \mathcal{A}_t, the fiber of \mathcal{A} at t, namely $\{x \in \mathbb{R}^n / q = (x; t) \in \mathcal{A}\}$.

We will denote by H^l the l-dimensional Hausdorff measure. Given a subanalytic set A of \mathbb{R}^n and a real number ε we will denote by $A_{\leq \varepsilon}$ the neighborhood of A defined by $\{x \in \mathbb{R}^n / d(x; A) \leq \varepsilon\}$.

We are going to study the Hausdorff measure of subanalytic sets. For this, if X is the germ of a subanalytic subset of \mathbb{R}^n at 0 we define the functions ψ, $\tilde{\psi}$, and $\hat{\psi}$ in the following way:

$$\psi(X; r) := H^l(X \cap B(0; r)),$$

where l is the dimension of X,

$$\tilde{\psi}(X; r) := \frac{\psi(X; r)}{\mu_l r^l},$$

where μ_l is the volume of the unit of ball in \mathbb{R}^l, and

$$\hat{\psi}(X; r) = H^{l-1}(X \cap S(0; r)).$$

The limit

$$\theta(X; x) := \lim_{r \to 0} \frac{H^l(X \cap B(x; r))}{\mu_l r^l}$$

is called the density or the Lelong number of X at x. The existence of this limit for a subanalytic set has been proved by Kurdyka and Raby in [KR]. Later, in [CLR] G. Comte, J. M. Lion and J. P. Rolin proved that the function ψ has a log-analytic expansion. For irreducible complex analytic sets, a result due to Draper states that this number is the multiplicity.

For the sake of clarity we recall the definitions of the Whitney (b) condition and the Kuo-Verdier (w) condition.

Definition 2.0.1. Let A be a subanalytic subset of \mathbb{R}^n. A subanalytic stratification of A is a locally finite partition of A into C^2 subanalytic submanifolds of \mathbb{R}^n. We call strata the elements of this partition.

A couple of strata $(X; Y)$ is said to be Whitney (b) regular at $y \in Y$ if for any sequences (x_k) and (y_k), of points of X and Y respectively, converging to y and such that there exist $l \in S^{n-1}$ and $\tau \in G^n_p$ (where $p = \dim X$) with $\tau = \lim T_{x_k}X$ and $l = \lim \frac{x_k y_k}{|x_k y_k|}$, we have $l \in \tau$.

A couple of strata is said to be \((w)\) regular at \(y_0 \in Y\) if there exists a constant \(C\) such that for \(x \in X\) and \(y \in Y\) in a neighborhood of \(y_0\):

\begin{equation}
\delta(T_y Y; T_x X) \leq C|y - x|
\end{equation}

where \(\delta(E; F) = \sup_{u \in E, |u| = 1} d(u; F)\) (with \(d\) the Euclidian distance) for \(E\) and \(F\) vector subspaces of \(\mathbb{R}^n\).

In this paper we prove:

Theorem 2.0.2. Let \(A\) be a subanalytic set stratified by a subanalytic stratification.

1. If all the strata satisfy the Whitney \((b)\) condition with respect to \(Y\) then the density of \(A\) is continuous along this stratum.
2. If all the strata satisfy the \((w)\) condition of Kuo-Verdier then the density of \(A\) is locally Lipschitz along the strata.

Remark 1. This article deals with subanalytic sets. However the results (and the proofs) can be written in the language of o-minimal geometry replacing ”subanalytic” by ”definable”. In this case the results assuming the Whitney \((b)\) condition require the o-minimal structure to be polynomially bounded, whereas that assuming the Verdier condition are true over any o-minimal structure.

Given a positive subanalytic function \(\alpha : \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}\) we introduce the notion of \(\alpha\)-approximation of the identity in the following way:

Definition 2.0.3. Let \(\mathcal{A}\) and \(\mathcal{B}\) be two families of sets of \(\mathbb{R}^n \times \mathbb{R}^m\). We call \(\alpha\)-approximation of the identity a family of mappings \(h : (\mathcal{A}; 0) \to (\mathcal{B}; 0)\) of type \(h(x; t) = (h_t(x); t)\), such that the germ of each \(h_t\) is the germ of a homeomorphism, for which we can find a strictly positive constant \(C\) such that for every \(t\)

\begin{equation}
|h_t(x) - x| \leq C\alpha(r; t)
\end{equation}

and

\begin{equation}
|h_t^{-1}(x) - x| \leq \alpha(r; t)
\end{equation}

for all \(x \in B(0; r)\) for which the above mappings are defined, with \(r\) sufficiently close to zero.

Let \(A\) be a subanalytic subset of \(\mathbb{R}^n\) of dimension \(l\). For \(P \in \mathbb{G}^l_n\) we will denote by \(\pi_P\) the orthogonal projection on \(P\). As a consequence of Gabrielov’s complement theorem \([G]\), we know that there exists an integer \(N\) such that for any vector space \(P\) in \(\mathbb{G}^l_n\) and for all \(q \in P\) either \(\text{card } (\pi_P^{-1}(q) \cap A) \leq N\) or \(\text{card } (\pi_P^{-1}(q) \cap A) = \infty\). This provides a finite partition of \(P\) into subanalytic subsets:

\[K_P^j(A) := \{q \in P / \text{card } \pi_P^{-1}(q) \cap A = j\}\]

\(j \in \{0, \ldots, N, \infty\}\). Then the \(l\) dimensional vector spaces \(P\) such that \(K_P^\infty(A) = \emptyset\) are dense in \(\mathbb{G}^l_n\).
3. Preliminary results

In this section we prove some general results about the volume of subanalytic families that we will use in the next section.

A key argument of the main proofs of this paper is the Cauchy-Crofton formula. This is a classical result which relates the Hausdorff measure of a set to that of its projections. We recall the formula without proof. We refer the reader to [F] (Theorem 2.10.15). We do not explicit the measure $\gamma_{l,n}$ on the Grassmannian since we will not need anything else than the fact that it is a finite measure. The formula given in [F] actually applies to a more general class of sets than subanalytic sets. We state this formula and then explicit it in our setting using the properties of subanalytic sets that we recalled at the end of the previous section.

Proposition 3.0.4. Let E be a subanalytic set of dimension l. Then:

$$\mathcal{H}^l(E) = \beta(l;n)^{-1} \int_{P \in G_{l,n}^l} \int_{y \in P} N(\pi_P;E;y) \, d\mathcal{H}^l(y) \, d\gamma_{l,n}(P),$$

where $\beta(l;n)$ is a constant, and $N(\pi_P;E;y)$ is the cardinal of the fiber $\pi^{-1}_P(y)$ intersected with E.

As we said above, if E is a subanalytic set, the cardinal of finite fibers of linear projections is uniformly bounded. So, for any $P \in G_{l,n}^l$ the integers j for which $K^P_j(E)$ is nonempty are bounded by an integer N and the Cauchy-Crofton formula becomes:

$$\mathcal{H}^l(E) = \beta(l;n)^{-1} \int_{P \in G_{l,n}^l} \sum_{j=1}^N j \mathcal{H}^l(K^P_j(E)) \, d\gamma_{l,n}(P).$$

In order to study the variation of the volume of a family we need some preliminary results. They will provide uniform bounds for sets and neighborhoods of a subanalytic family which is indexed on a compact set.

We shall make use of a second basic formula of geometric measure theory. We again refer the reader to [F] (see also [CY] chap. 7). This formula, sometimes called the *coarea formula*, relates the volume of a set to the volume of the fibers of a differentiable map. We recall this formula in a particular case which will be enough for the purpose of this paper. More precisely:

Proposition 3.0.5. Let A be a C^1 submanifold of \mathbb{R}^n of dimension $l > 1$ and let $f : A \to \mathbb{R}$ be a differentiable function. Then:

$$\int_{y \in \mathbb{R}} \mathcal{H}^{l-1}(A \cap f^{-1}(y)) \, d\mathcal{H}^l(y) = \int_{x \in A} |\partial_x f| \, d\mathcal{H}^l(x).$$

where $|\partial_x f|$ is the norm of the gradient of f.

We will apply this formula to subanalytic subsets which can be singular. The reason is that we may apply it to the regular locus of our given set, since it is a smooth manifold and the singular locus has a zero l-dimensional measure.

Two preliminary propositions. The point is that the constants given by the two following propositions do not depend on the parameters provided they stay in a given compact set.
Moreover, in the case \(\psi \leq 0 \) real \(r \) be a compact subset of \(\mathbb{R}^{m} \). For each real number \(r_{0} \), there exists a constant \(C \) such that for any \(t \in K \) and for any real number \(0 \leq r \leq r_{0} \):

\[
\psi(A_t; r) \leq Cr^{l}.
\]

Proof. We begin by the case \(l = n \). We may decompose the fibers \(A_t \) in a finite number (bounded independently of \(t \)) of subsets of type

\[
\{(x; y; t) \in \mathbb{R}^{l-1} \times \mathbb{R} \times \mathbb{R}^{m}/f(x; t) \leq y \leq g(x; t)\}
\]

where \(f \) and \(g \) are Lipschitz functions after a possible change of coordinates. So:

\[
\psi(A_t; r) \leq C \sup_{x \in B(0; r)} \{ |f(x; t) - g(x; t)| \} \mathcal{H}^{l-1}(B(0; r) \cap \mathbb{R}^{l-1}) \leq Cr^{l}.
\]

If \(l < n \), we may also decompose \(A_t \) into graphs of mappings which are Lipschitz after a possible change of coordinate. Hence the volumes of the subsets are now equivalent (as functions of \(r \), up to constants which are uniform with respect to \(t \)) to those of their respective projections and the conclusion follows from the case \(l = n \). \(\square \)

The following proposition allows us to bound uniformly with respect to \(\varepsilon \) the volumes of neighborhoods of the fibers of a subanalytic family.

Proposition 3.0.7. Let \(A \subseteq \mathbb{R}^{l} \times \mathbb{R}^{m} \) be a subanalytic family of subsets of \(\mathbb{R}^{l} \) and let \(K \) be a compact subset of \(\mathbb{R}^{m} \). Assume that \(\text{dim} A_t = k < l \) for any \(t \in K \). Then for each real \(r_{0} \) there exists a constant \(C \) such that for all \(t \) in \(K \), for all \(\varepsilon \in [0; 1] \) and for all real \(0 \leq r \leq r_{0} \):

\[
(\psi(A_t) \leq \varepsilon; r) \leq Cr^{l-1} \varepsilon.
\]

Moreover, in the case \(k = l \), then for each positive real number \(r_{0} \) there exists a constant \(C \) such that for all \(t \) in \(K \) and for all \(0 \leq r \leq r_{0} \):

\[
\psi((A_t) \leq \varepsilon; r) \leq Cr^{l-1} \varepsilon + \psi(A_t; r).
\]

Proof. The norm of the gradient of the distance function to a subset of \(\mathbb{R}^{m} \) is equal to 1 at all points where this function is differentiable. Moreover the family

\[
A' = \{(x; t; \alpha) \in \mathbb{R}^{l} \times \mathbb{R}^{m+1}/d(x; A_t) = \alpha\}
\]

is a subanalytic family of subsets of \(\mathbb{R}^{l} \). So, by the previous proposition, there exists a constant \(C \) such that for all \((t; \alpha) / K \times [0; 1] \) we have: \(\psi(A'(t; \alpha); r) \leq Cr^{l-1} \). Thus, we can write:

\[
\psi((A_t) \leq \varepsilon; r) = \int_{(A_t) \leq \varepsilon \cap B(0; r)} d\mathcal{H}^{l} \leq \int_{0}^{\varepsilon} \psi(A'(t; \alpha); r) d\mathcal{H}^{l}(\alpha) \quad \text{(by (3.6))}
\]

\[
\leq Cr^{l-1} \varepsilon.
\]

In the case where all the \(A_t \) are of dimension \(l \), we set \(C_t = cl(A_t) \setminus \text{Int}(A_t) \). Thus the sets \(C_t \) form a subanalytic family of sets of dimension strictly less than \(l \). Since \((A_t) \leq \varepsilon \subseteq (C_t) \leq \varepsilon \cup A_t \), the result follows from the case \(k < l \). \(\square \)
4. Density of subanalytic sets

4.1. Density and the Whitney (b) condition. In this section we prove that the density is continuous along a stratum satisfying the Whitney (b) condition (Corollary 2.0.2). Thus, for this section, we fix a subanalytic set \(A \subseteq \mathbb{R}^{n+m} \) of dimension \(l \). We will assume that \(A \) is stratified by a family of \(C^2 \) subanalytic manifolds \(\{ Y, X_1, \ldots, X_\nu \} \). Let us also assume that all the pairs \((Y; X_i) \) are Whitney (b) regular.

Denote by \(A^i \) the union of the strata of this stratification of dimension less than or equal to \(i \). To study the behavior of the density along \(Y \) we will assume that \(Y = \{0\} \times \mathbb{R}^m \). This is no loss of generality since we may find a coordinate system \(\Phi \) such that \(d_0 \Phi = Id \). We will denote by \(\pi \) the orthogonal projection onto \(Y \).

It will be convenient to work with the family:
\[
A = \{(x; u; t) \in A \times \mathbb{R}^m / (x; u + t) \in A\}.
\]
Now the germ of \(A_t \) at zero is the germ of \(A \) at \((0; t) \in Y \) (only the \(m \) last variables are considered as parameters).

Similarly, we will denote by \(A^i_t \) the family obtained from \(A^i \):
\[
\{(x; u; t) \in A^i \times \mathbb{R}^m / (x; u + t) \in A^i_t\}.
\]

We will need another proposition to bound uniformly in the parameter \(t \) the variation Hausdorff measure of the fibers of a subanalytic family. This one relies on the assumption of the Whitney condition. More precisely:

Proposition 4.1.1. For any compact subset \(V \) of \(Y \) there exist a strictly positive real number \(r_0 \) and a constant \(C \) such that if \(r \) and \(r' \) are positive real numbers satisfying \(r' \leq r \leq r_0 \) we have for any \(t \in V \):
\[
|\psi(A_t; r) - \psi(A_t; r')| \leq Cr^{l-1}|r - r'|.
\]

Proof. Let \(\lambda \) denote the distance to the stratum \(Y \) restricted to the regular locus of \(A \) (by regular locus we mean the points at which the set \(A \) is a smooth manifold). We wish to apply formula (3.6), so we first prove that \(\partial_q \lambda \) tends to 1 when \(q \) tends to the origin. The norm of the gradient of the distance to \(Y \) is 1 and this vector is collinear to the secant \(q \pi(q) \). Given a point \((x; t) \) of \(A \) let us denote by \(X_{(x; t)} \) the stratum which contains this point. As all the strata satisfy the Whitney (b) condition and \(V \) is compact, there exists a subanalytic function \(\phi : \mathbb{R} \rightarrow \mathbb{R} \) tending to zero at the origin such that for all \(t \in V \) and for all \(x \) in \(X_{(x; t)} \):
\[
\delta(\frac{x}{|x|}; T_x X_{(x; t), t}) \leq \phi(|x|)
\]
where \(X_{(x; t), t} \) is the fiber of \(X_{(x; t)} \) at \(t \) (see Definition 2.0.1 for the definition of \(\delta \)).

This implies that \(\partial_q \lambda \) tends to 1 uniformly in \(t \) on \(X_{(x; t)} \) since the projection of the gradient onto the tangent space to \(X_{(x; t), t} \) tends to the identity when we approach the origin.

Let \(\mathcal{B} = \{(x; t; r) \in S^{n-1}(0; r_0) \times \mathbb{R}^m \times \mathbb{R} / rx \in A_t, r \leq r_0, t \in V\} \). If \(r_0 \) is chosen small enough the family \(\mathcal{B} \) is a subanalytic family of sets of dimension \((l - 1)\) (considering \(t \) and \(r \) as parameters). The distance between two points of \(S(0; r) \) is less than or equal to \(2r \)
and so for \(r \leq r_0 \), we have \(\psi(B_{t,r}; 2r_0) = \mathcal{H}^{l-1}(B_{t,r}) \). But by the definition of the family \(B_{t,r} \) we have
\[
\mathcal{H}^{l-1}(B_{t,r}) = r_0^{l-1} \tilde{\psi}(A_t; r) \frac{r}{r^{l-1}}.
\]
Now since the family \((B_{t,r})_{t \in V} \) is a subanalytic family of sets then, by Proposition 3.0.6, there exists a constant \(C \) such that:
\[
\psi(B_{t,r}; 2r_0) \leq C 2^{l-1} r_0^{l-1}.
\]
This is equivalent to
\[
\tilde{\psi}(A_t; r) \leq 2^{l-1} C r^{l-1}
\]
for a constant \(C \).

So, using (3.6), we can write for \(r' \leq r \leq r_0 \):
\[
|\psi(A_t; r) - \psi(A_t; r')| = \left| \int_{A_t \cap B(0;r) \setminus B(0;r')} d\mathcal{H}^l \right|
\leq 2 \left| \int_{A_t \cap B(0;r) \setminus B(0;r')} \left| \partial_q \lambda \right| d\mathcal{H}^l(q) \right| \quad \text{(since } \lambda \text{ tends to 1)}
\leq 2 \int_{r'}^r \tilde{\psi}(A_t; s) d\mathcal{H}^1(s)
\leq 2 C r^{l-1} \int_{r'}^r d\mathcal{H}^1
\leq 2 C r^{l-1} \left| r - r' \right|.
\]

\[\square \]

Remark 2.
1. In particular if \(A \) is a subanalytic set we can find real number \(r_0 \) such that for all \(r' \leq r \leq r_0 \):
\[
|\psi(A; r) - \psi(A; r')| \leq C r^{l-1} \left| r - r' \right|.
\]

For a subanalytic family of sets we may drop the hypothesis of Whitney (b) condition provided we weaken the conclusion in: *for each \(t \) there exists \(r_0 \), that is to say if \(r_0 \) depends on \(t \).*

2. The assumption of the Whitney (b) condition can be weakened. It is clear from the proof that it is sufficient to assume that the Milnor radius is stable \([\text{BK}][0]\). It seems also that in this case the converse could be proved. We mean that the conclusion to Proposition 4.1.1 may imply that the Milnor radius is stable. If the Milnor radius is stable for all strata we have topological triviality. Thus we would get by a metric sufficient condition for topological stability.

We now prove an isotopy lemma. It is well known \([\text{Ma}]\) that Whitney stratifications are topologically trivial along the strata. We need a precise statement in our context which will be useful in the proof of Proposition 4.1.3 to bound the measure of the complement of the set where we do not have “equimultiplicity” for a generic projection.

Proposition 4.1.2. Let \(\gamma : [-\delta; \delta] \to Y \) be an analytic arc, \(\gamma(0) = 0 \). Then there exist a strictly positive real number \(\eta \) and a map \(h : A_{|\gamma([0;\eta])|} \setminus \mathcal{B} \to (A_0 \times \gamma([0;\eta])) \setminus \mathcal{B}' \) which...
is an $\alpha-$approximation of the identity with $\alpha(r; t) = |t|^{1-e}r$ with $e < 1$, and where the families \mathcal{B}' and \mathcal{B} satisfy

(i) $\mathcal{B}' \subseteq \{ q \in \mathcal{A}_0/d(q; \mathcal{A}_0^{(-1)}) \leq |t|^{-1-e}|q| \}$

(ii) $\mathcal{B} \subseteq \{ q \in \mathcal{A}_t/d(q; \mathcal{A}_t^{(-1)}) \leq |t|^{-1-e}|q| \}$.

for t sufficiently close to zero in the image of γ.

Proof. We construct the isotopy by integration of vector fields as in Thom-Mather isotopy lemma [Ma]. Note that the strata X_i are not necessarily Whitney (b) regular with respect to each other. So, we may only prove uniqueness of some integral curves (which are sufficiently far away from the lower dimensional strata) and we shall define the desired family of homeomorphisms on $\mathcal{A}^i_{\gamma((0,\eta)]}$ by induction on i.

For $i = m$ the result is clear. So, we assume that the result is true for $i \geq m$.

The stratification of A given by the X_i, $Y_i := \gamma([-\delta; \delta])$ and $Y \setminus Y_i$ is still (b) regular. As the arc γ constitutes a stratum of dimension one, and by [K] or [OT1] the tangent spaces satisfy the following estimation:

$$\delta(T_y Y_i; T_y X_j) \leq C \frac{|y-x|}{|\pi'(x)|^e}$$

(where π' is the orthogonal projection on Y_i) for a real number $e < 1$ in a sufficiently small neighborhood of the origin.

By standard arguments [Ve], [Ma], [OT1] we may obtain a stratified unit vector field v defined on A^{i+1}, tangent to Y_i and tangent to the X_j's, and satisfying:

$$(4.8) \quad |v(q) - v(\pi(q))| \leq \frac{|q - \pi'(q)|}{|\pi'(q)|^e}$$

in a sufficiently small neighborhood of the origin.

We may identify Y with $\{0_{\mathbb{R}^{m-1}}\} \times \mathbb{R}$ and choose v such that $v \equiv (0; -1)$ on Y_i. Denote by ϕ the one-parameter group generated by this vector field. Let $\phi = (\phi_1; \phi_2) \in \mathbb{R}^{n+m-1} \times \mathbb{R}$; we also have by (4.8) (again the reader is referred to [OT1] or [OT2]) that:

$$(4.9) \quad |\phi_1((q; u); s) - q| \leq C s^{1-e}|q|$$

for any $(q; u) \in \mathbb{R}^{n+m-1} \times \mathbb{R}$ and $s \geq 0$ for which ϕ is defined. This implies that the integral curves cannot join Y_i before $s = C^{1+1}$, and thus before $s = u$ if $0 < u < C^{1+1}$.

The mapping ϕ_1 will induce the desired trivialization on A_i^{i+1}. We first prove that an integral curve $\phi((q; u); s)$, starting from a point $(q; u) \in \mathbb{R}^{n+m-1} \times Y_i$, may not fall into A_i before $s = u$, as long as $(q; u)$ is chosen sufficiently “far away” from A_i (see (4.11)).

Note that by the induction hypothesis there exists an $\alpha-$approximation of the identity h^i with $\alpha(r; t) = t^{1-e}r$ defined on $\mathcal{A}^i_{(0)\times[0,\eta]}$. This implies for $t \in \mathbb{R}$, considering A as a family of subsets of \mathbb{R}^{n+m-1} parameterized by the last variable:

$$(4.10) \quad d_H(A_0^i \cap B(0; r); A_t^i \cap B(0; r)) \leq C t^{1-e}r.$$

for a constant C (where $d_H(E; F) = \max(\sup_{x \in E} d(x; F); \sup_{y \in F} d(y; E))$ is the Hausdorff distance between sets), so that for q in A_t^{i+1} such that:

$$(4.11) \quad d(q; A_t^i) \geq 4C t^{1-e}|q|$$
we have \(d(q; A^i_{t-s}) \geq 2Ct^{1-\varepsilon}|q|\) (applying (4.10) two times). Note that \(\phi_1((q; t); s)\) is an element of \(A^i_{t-s}\) and using (4.9) we deduce

(4.12) \[d(\phi_1((q; t); s); A^i_{t-s}) \geq Ct^{1-\varepsilon}|q|\]

when \(0 \leq s \leq t\).

Therefore, by (4.9), the curve \(\phi((q; t); s)\) cannot join \(A^i\) before \(s = t\) if \(q \in A^i_{t+1}\) satisfies (4.11). This proves the existence of the integral curves until at least \(s = t\) in a neighborhood of 0 for such points \((q; t)\). So, we now set

\[B_t = \{q \in A^{i+1}_{[0;\infty) \times [0;\eta]} / d(q; A^i_{[0,t)}) \leq 4|q||t^{1-\varepsilon}\}\]

and for \(\eta > 0\) sufficiently small:

\[h : A^{i+1}_{[0;\infty) \times [0;\eta]} / B \rightarrow A_0 \times [0;\eta][q; 0; t] \mapsto (\phi_1((x; u + (0; t)); t)); t)\]

where \(q = (x; u) \in \mathbb{R}^n \times \mathbb{R}^m\).

The map \(h_t\) is a homeomorphism onto its image for each \(t\). By (4.9) it is an \(\alpha\)-approximation of the identity with \(\alpha = t^{1-\varepsilon}r\) and \(\varepsilon < 1\). Let \(B_t' = A_0 \setminus h_t(A_0 \setminus B_{(0; t)})\).

By (4.12) we know that if \(q \in A_0\) is such that \(d(q; A^i_0) \geq 4t^{1-\varepsilon}|q|\) then

\[d(\phi(q; -t); A^i_0) \geq 3|t|^{1-\varepsilon}|q|\]

and so

\[d(\phi((q; -t); A^i_{(0; t)})) \geq 2t^{1-\varepsilon}|q|\]

using (4.10). In consequence \(\phi(q; -t) \notin B_t\). Thus

\[B_t'(0; t) \subseteq \{q \in A^{i+1}_0 / d(q; A^i_0) \leq 4t^{1-\varepsilon}|q|\}\]

as claimed. \(\square\)

The next proposition is a consequence of this isotopy lemma. More precisely, we are going to see that such isotopies preserve cardinals of generic fibers of a projection through small variations of the parameter in a subanalytic family.

Proposition 4.1.3. For any \(\varepsilon > 0\), there exists a neighborhood \(U_{\varepsilon}\) of 0 in \(Y\), such that for any \(P \in G^l_{n+m}\) and a subset \(K(P; \varepsilon; r; t)\) of \(B(0; r) \cap P\) such that \(H^l(K(P; \varepsilon; r; t)) \leq \varepsilon r^l\) and such that for any \(t \in U_{\varepsilon}\) and \(x \in P \cap B(0; r) \setminus K(P; \varepsilon; r; t)\):

(4.13) \[\text{card } (\pi^{-1}_P(x) \cap A_t \cap B(0; r)) = \text{card } (\pi^{-1}_P(x) \cap A_0 \cap B(0; r)).\]

Proof. We fix a strictly positive real number \(r\). Since the family \(A\) is subanalytic there exists an integer \(N\) such that for all \(j \geq N\) and any \(P \in G^l_{n+m}\) we have \(K^P_j(A) = \emptyset\), and \(\text{dim } K^P_\infty(A) < l\). Let

\[H(P; j; t; r) = \partial(K^P_j(A_t \cap B(0; r)))\]

where \(\partial\) denotes the topological boundary. Now set

\[H(P; t; r) = \bigcup_{j \in N \cup \{\infty\}} H(P; j; t; r) \leq 2\varepsilon r.\]
The family \((H(P; t; r))_{r \in B(0; 1)}\) is subanalytic and is indexed by a compact subset. We apply Proposition 3.0.7 (identify \(P\) with \(\mathbb{R}^l\)) to get a constant \(C\) such that for \(t \in B(0; 1)\):

\[
\psi(H(P; j; t; r) \leq 2\varepsilon r; r) \leq C\varepsilon r^l.
\]

Moreover by Proposition 4.1.1 there exists a constant \(C\) (independent of \(\varepsilon\)) such that

\[
H^l(A_t \cap B(0; r) \setminus B(0; r - 2\varepsilon r)) \leq C\varepsilon r^l
\]

for all \(t \in B(0; 1)\).

Let

\[
\mathcal{M}_t(r) = \pi_P(A_t \cap B(0; r) \setminus B(0; r - 2\varepsilon r))
\]

and

\[
\mathcal{N}(r) = \pi_P(A_0 \cap B(0; r) \setminus B(0; r - 2\varepsilon r)).
\]

Of course, a fortiori \(H^l(\mathcal{M}_t(r)) \leq C\varepsilon r^l\) and \(H^l(\mathcal{N}(r)) \leq C\varepsilon r^l\). We can derive from Proposition 3.0.7 (again identifying \(P\) with \(\mathbb{R}^l\)):

\[
H^l(\mathcal{M}_t(r)_{\leq 3\varepsilon r}) \leq C\varepsilon r^l
\]

and

\[
H^l(\mathcal{N}(r)_{\leq 3\varepsilon r}) \leq C\varepsilon r^l
\]

for a constant \(C\) independent of \(\varepsilon\). Finally for \(t \in \mathbb{R}^m\) let

\[
\mathcal{Q}_t(r) = \pi_P(A_t^{l-1}).
\]

By Proposition 3.0.7 we again have \(\psi((\mathcal{Q}_t)_{\leq \varepsilon t}; r) \leq C r^l\varepsilon\) for a constant \(C\) independent of \(\varepsilon\). Therefore now we can set \(K(P; \varepsilon; r; t) = H(P; t; r) \cup H(P; 0; r) \cup \mathcal{M}_t(r)_{\leq 3\varepsilon r} \cup \mathcal{N}(r)_{\leq 3\varepsilon r} \cup (\mathcal{Q}_t)_{\leq \varepsilon r} \cup (\mathcal{Q}_0)_{\leq \varepsilon r}\).

By the above we have that

\[
\psi(K(P; \varepsilon; r; t); r) \leq C r^l\varepsilon.
\]

Therefore it suffices to check that (4.13) holds outside \(K(P; \varepsilon; r; t)\) for \(t\) sufficiently close to zero.

Thanks to the curve selection lemma it suffices to check it along an analytic curve \(\gamma: [-\delta; \delta] \to \mathbb{R}^m\). Let \(P \in \mathcal{G}^l_{n+m}\) and \(x \in P \cap B(0; r) \setminus K(P; \varepsilon; r; t)\). Let \(j = \text{card } \pi_P^{-1}(x) \cap \mathcal{A}_t\), with \(t = \gamma(s)\), \(s \geq 0\) fixed, and \(j' = \text{card } \pi_P^{-1}(x) \cap \mathcal{A}_0\). We remark that by definition of \(H(P; t; r)\) we have

\[
d(x; \partial K_j^P(\mathcal{A}_t \cap B(0; r))) > 2\varepsilon r.
\]

So, over \(B(x; 2\varepsilon r)\), the set \(\mathcal{A}_t\) (resp. \(\mathcal{A}_0\)) is the union of \(j\) (resp. \(j'\)) connected components \(C_1, \ldots, C_j\) (resp. \(C_1^0, \ldots, C_j^0\)) and \(\pi_P\) induces an homeomorphism from \(C_i\) (resp. \(C_i^0\)) onto its image. Note that by the preceding proposition, there exists a local trivialization \(h: \mathcal{A}_i \setminus \gamma([0; \eta]) \setminus \mathcal{B}^l \to (\mathcal{A}_0 \times \gamma([0; \eta])) \setminus \mathcal{B}^l\) which is an \(\alpha\)-approximation of the identity with \(\alpha = |t|^{1-\varepsilon r}\) and \(\varepsilon < 1\).

But, by the definition of the \(\alpha\)-approximations of the identity, we have:

\[
|h_i^{-1}(z) - z| \leq |t|^{1-\varepsilon r},
\]
for t sufficiently close to zero in the image of γ and $z \in B(0; r) \cap A_t \setminus K(P; r; t; \varepsilon)$ at which h_t^{-1} is defined.

Let $z \in B(x; \varepsilon r)$. Since x does not belong to $\mathcal{M}_t(r) \leq 3\varepsilon r$, the ball of center x and of radius εr does not intersect the set $\mathcal{M}_t(r) \leq 2\varepsilon r$. Hence, thanks to the definition of \mathcal{M}_t, if $z \in C_{j_0} \cap \pi_P^{-1}(z)$, with $j_0 \in \{1, \ldots, j\}$, it is in $B(0; r - 2\varepsilon r)$.

Note that we have

$$B_t \subseteq \{g \in A_t/d(q; A_t^{-1}) \leq |t|^{1-\varepsilon}|g|\}$$

which is included in $(Q_t)_{< \varepsilon r}$ for t small enough. Thus, $h_t(z)$ is well defined. So since $|h_t(z) - z| \leq \varepsilon r$ and $z \in B(0; r - 2\varepsilon r)$ the point $h_t(z)$ must belong to $B(0; r)$. Moreover $\pi_P(h_t(z)) \in B(x; 2\varepsilon r)$ (again since $|h_t(z) - z| \leq \varepsilon r$) and so $h_t(z)$ actually belongs to one of the C_t^0. As C_{j_0} is connected and the C_t^0’s are disjoint, the integer k does not depend on the point z in $C_{j_0} \cap \pi_P^{-1}(B(x; \varepsilon r))$. Let $\sigma(j_0)$ be this integer.

By this way, we have defined a mapping σ from $\{1, \ldots, j\}$ to $\{1, \ldots, j'\}$. In order to show $j' \leq j$ it suffices to see that σ is surjective.

Let i be an integer between 1 and j'. Let z be the point of $\pi_P^{-1}(x) \cap C_i^0$ and denote $p = h_t^{-1}(z)$. Since $x \notin N(r)$, the point z belongs to $B(0; r - 2\varepsilon r)$; this implies, using the inequality $|h_t^{-1}(z) - z| \leq \varepsilon r$, that the point p also belongs to $B(0; r)$.

Moreover (again using that $|h_t^{-1}(z) - z| \leq \varepsilon r$) it is clear that $\pi_P(p) \in B(x; r - \varepsilon r)$. Thus, there exists an integer i_0 such that $p \in C_{i_0}$, which implies that $\sigma(i_0) = i$.

By the symmetry of the roles of j and j' we see that the same argument can prove $j \geq j'$.

Now we are able to prove the first point of our main result:

Proof of (1) of Theorem 2.0.2. Let $\varepsilon > 0$. By the above proposition for all $P \in \mathbb{G}_{n+m}$ there exists a subanalytic subset $K(P; \varepsilon; r; t)$ such that for t in a sufficiently small neighborhood of the origin in Y:

$$\psi(K(P; \varepsilon; r; t); r) \leq C\varepsilon r^l$$

and for all $x \in P \cap B(0; r) \setminus K(P; \varepsilon; r; t)$ and $t \in V$:

$$\text{card } \pi_P^{-1}(x) \cap A_t \cap B(0; r) = \text{card } \pi_P^{-1}(x) \cap A_0 \cap B(0; r).$$

It follows from (3.4) that for any $j \geq 0$ and for all P in \mathbb{G}_{n+m}. We have:

$$\psi(K_j^P(A_t \cap B(0; r)) \setminus K_j^P(A_0 \cap B(0; r)); r) \leq C\varepsilon r^l$$

and

$$\psi(K_j^P(A_0 \cap B(0; r)) \setminus K_j^P(A_t \cap B(0; r)); r) \leq C\varepsilon r^l.$$

So we get:

$$|\psi(K_j^P(A_0 \cap B(0; r)); r) - \psi(K_j^P(A_t \cap B(0; r)); r)| \leq C\varepsilon r^l.$$

And finally, using (3.5), we get for t sufficiently close to the origin:

$$|\theta(A; t; 0) - \theta(A; 0)| \leq C\varepsilon,$$

This implies:

$$|\theta(A; t; 0) - \theta(A; 0)| \leq C\varepsilon.$$
which proves the continuity of the density at the origin.

4.2. The Kuo-Verdier regular case. We will apply a similar argument in the case where the strata satisfy the \((w)\) condition of Kuo-Verdier. In this case we are going to see that the method can prove the Lipschitzness of the density along the strata. We first study the variation of the volume through an \(\alpha\)–approximation of the identity.

So, as in the case of the Whitney \((b)\) condition, we fix a subanalytic set \(A \subseteq \mathbb{R}^n \times \mathbb{R}^m\). We assume that \(A\) is stratified by a family of \(C^2\) subanalytic manifolds \(\{Y, X_1, \ldots, X_\nu\}\). Again we will assume that \(Y = \{0\} \times \mathbb{R}^m\).

It will be convenient to work with the families:
\[
A = \{(x; u; t; t') \in A \times \mathbb{R}^{2m} / (x; u + t) \in A\}
\]
and
\[
B = \{(x; u; t; t') \in A \times \mathbb{R}^{2m} / (x; u + t') \in A\}.
\]

Now the germ of \(A(t,t')\) at the origin is the germ of \(A\) at \((0; t)\) and the germ of \(B(t,t')\) at the origin is the germ of \(A\) at \((0; t')\). Note that \(A\) and \(B\) are two subanalytic families of sets.

We first give a proposition of the same type of Proposition 4.1.3 in the case where we have two subanalytic families related by an \(\alpha\)–approximation of the identity.

Proposition 4.2.1. Let \(\alpha\) be a subanalytic function defined on \(\mathbb{R} \times \mathbb{R}^m\). Let \(h : A \to B\) be an \(\alpha\)-approximation of the identity and let \(P\) be in \(G_{\alpha+m}\). Then for any compact \(V\) of \(\mathbb{R}^m\) there exists a constant \(C\) and a subanalytic subset \(K(P; r; t) \subseteq P\) satisfying
\[
\psi(K(P; r; t); r) \leq C\alpha(r; t)r^{l-1},
\]
and such that, for any \(t \in V\) we have for \(r\) sufficiently close to zero and for any \(x \in P \cap B(0; r) \setminus K(P; r; t)\):
\[
\text{card} (\pi_P^{-1}(x) \cap A_t \cap B(0; r)) = \text{card} (\pi_P^{-1}(x) \cap B_t \cap B(0; r)).
\]

Proof. We define the desired set in a similar way as in Proposition 4.1.3. Nevertheless, as the situation is now different (since we now work with two families), we give details. First let:
\[
H(P; j; t; r) = \partial(K^t_j(A_t \cap B(0; r))) \cup \partial(K^t_j(B_t \cap B(0; r)))).
\]
Then, as in the proof of Proposition 4.1.3:
\begin{equation}
\psi(H(P; j; t; r)) \leq 2\alpha(r; t; r) \leq C\alpha(r; t)r^{l-1}.
\end{equation}

As the family \(A\) and \(B\) are subanalytic subsets of \(\mathbb{R}^n \times \mathbb{R}^m\) they are Whitney stratifiable. Moreover we may choose a stratification compatible with \(\{0\} \times \mathbb{R}^m\). In consequence by Proposition 4.1.1 there exists a constant \(C\) such that for \(r\) sufficiently small
\[
\mathcal{H}^l(A_t \cap B(0; r) \setminus B(0; r - 2\alpha(r; t))) \leq C\alpha(r; t)r^{l-1}
\]
and
\[
\mathcal{H}^l(B_t \cap B(0; r) \setminus B(0; r - 2\alpha(r; t))) \leq C\alpha(r; t)r^{l-1}
\]
for all \(t \in V\).

Let
\[
M_t(r) = \pi_P(A_t \cap B(0; r) \setminus B(0; r - 2\alpha(r; t))).
\]
and
\[N_t(r) = \pi_P(B_t \cap B(0; r) \setminus B(0; r - 2\alpha(r; t))). \]
Of course a fortiori we have \(\psi(M_t(r); r) \leq C\alpha(r; t)r^{d-1} \) and \(\psi(N_t(r); r) \leq C\alpha(r; t)r^{d-1} \).
We can deduce using Proposition 3.0.7 that:
\[\psi(M_t(r)_{\leq 3\alpha(r; t)}; r) \leq C\alpha(r; t)r^{d-1} \]
and
\[\psi(N_t(r)_{\leq 3\alpha(r; t)}; r) \leq C\alpha(r; t)r^{d-1} \]
for a constant \(C \).
So we set:
\[K(P; r; t) = H(P; A_t; r) \cup H(P; B_t; r) \cup M_t(r)_{\leq 3\alpha(r; t)} \cup N_t(r)_{\leq 3\alpha(r; t)}. \]
Now we have to show that in \(P \cap B(0; r) \setminus K(P; r; t) \) the cardinal of the fibers of \(\pi_P \) is the same for \(A_t \) and \(B_t \). This can be proved like in the proof of Proposition 4.1.3. □

Proposition 4.2.1 enables us to compare the volumes of subanalytic families which can be related by an approximation of the identity. Indeed, the Cauchy-Crofton formula relates multiplicities to the Hausdorff measure of \(A \). From the equality of the multiplicities in the complementary of a set whose measure is bounded explicitly, we can bound the difference between the volume of the two given sets. So we state:

Theorem 4.2.2. Let \(\alpha : \mathbb{R} \times \mathbb{R}^{2m} \to \mathbb{R} \) be a subanalytic function. Let \(h : A \to B \) be an \(\alpha \)-approximation of the identity. Let \(V \) be a compact subanalytic subset of \(\mathbb{R}^{2m} \). Then there exists a constant \(C \) such that for all \(t \) in \(V \):
\[|\psi(A_t; r) - \psi(B_t; r)| \leq C\alpha(r; t)r^{d-1}. \]

Proof. This is a consequence of the above proposition and the Cauchy-Crofton formula (3.5) (see proof of Theorem 2.0.2). □

It is well known that Kuo-Verdier stratifications are also topologically trivial along the strata ([Ve]). We first state an isotopy theorem which gives the precise statement that we will need.

Theorem 4.2.3. Recall that we assumed that the stratification of \(A \) satisfies the Kuo-Verdier’s \((w) \) condition. Then there exists a neighborhood \(U \) of 0 and a family of mapping \(h : A_{|U \times U} \to B_{|U \times U} \) which preserves \(A \) and which is an \(\alpha \)-approximation of the identity with \(\alpha(r; t; t') = |t - t'|r \).

Proof. The argument is classical. We construct a vector field tangent to the strata of the stratification of \(A \) that we integrate to produce the desired family of homeomorphisms. The assumption of the \((w) \) condition provides a flow \(\phi \) satisfying
\[|\pi^\perp(\phi(q; s)) - q| \leq C|s|d(q; Y) \]
(where \(\pi^\perp \) is the projection on the the orthogonal complement to \(Y \)), for a constant \(C \) (see [Ve]). □

We are now able to prove the Lipschitzness of the density along Kuo-Verdier regular stratifications.
Proof of (2) of Theorem 2.0.2. Let \(t \in Y \) and let \(U \) be a compact neighborhood of \(t \). By Theorem 4.2.3 there exists an \(\alpha \)-approximation of the identity

\[
h : A|_{U \times U} \to B|_{U \times U}
\]

where \(\alpha(r; t; t') = |t - t'|r \). Now Proposition 4.2.2 implies:

\[
|\psi(A(t, t') ; r) - \psi(B(t, t') ; r)| \leq C|t - t'| r^l
\]

for a constant \(C \) and \(t \) and \(t' \) sufficiently close to the origin. This implies the local Lipschitzness of the density. \(\square \)

Note that it is also possible to deduce that if \(\alpha(r) \ll r \) then an \(\alpha \)-approximation of the identity preserves the density. In consequence the density is constant along a stratum of a stratification satisfying the strict Verdier condition.

Remark 3. (1) Let \(p : \mathbb{R}^n \to Y \) be a smooth retraction. It is also possible to prove similar results for the family of the germs of the fibers of \(p|_{A} \).

(2) The Lipschitzness is local since we work with subanalytic sets. Over an o-minimal structure it is possible to prove the result with a global Lipschitz constant (as long as we have a global constant in (2.1)).

Acknowledgment This paper has been written during my Post-doc position at the Jagiellonian University of Krakow. I thank Professor Pawłucki for his attention and David Trotman for his interest and to have suggested the problem. I thank my wife for her careful reading of the manuscript.

References

Department of Mathematics, University of Toronto, 40 St. George st, Toronto, ON, Canada M5S 2E4.

E-mail address: gvalette@math.toronto.edu