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ON METRIC TYPES THAT ARE DEFINABLE IN AN O-MINIMAL

STRUCTURE

GUILLAUME VALETTE

Abstract. In this paper we study the metric spaces that are definable in a polynomially bounded o-

minimal structure. We prove that the family of metric spaces definable in a given polynomially bounded

o-minimal structure is characterized by the valuation field Λ of the structure. In the last section we prove

that the cardinality of this family is that of Λ. In particular these two results answer a conjecture given in

[SS] about the countability of the metric types of analytic germs. The proof is a mixture of geometry and

model theory.

§0. Introduction. Given a subset of Rn, definable in an o-minimal structure, we
may consider it as a metric space if we endow it with the induced metric of Rn.
The classification of such subspaces up to bi-Lipschitz homeomorphisms goes back
to T. Mostowski’s work on complex analytic sets [M]. He was motivated to find a
notion of stability more precise than topological stability.
Few years before L. Siebenmann and D. Sullivan had also studied subsets of Rn

that are bi-Lipschitz homeomorphic. In [SS] was asked whether the number of
metric types of real analytic germs is countable. By the metric type of a set is the
class of all the subsets of Rn which are bi-Lipschitz homeomorphic to this set.
In [P1, P2] A. Parusiński has generalized T. Mostowski’s results to the real
case. Recently L. Van den Dries and P. Speissegger have generalized the so called
“preparation Theorem” to polynomially bounded o-minimal structures [vD-S].
In [V2], we prove a bi-Lipschitz isotopy theorem in the context of polynomially
bounded o-minimal structure using Speissegger and Van den Dries’ result. This
was new even for semi-algebraic or subanalytic sets since it yields the existence of
definable isotopies. Moreover the author introduced a new object, called Lipschitz
triangulations, useful to investigate metric properties of metric subspaces of Rn.
In this paper we deal with o-minimal structures and investigate some questions
closely related to the L. Siebenmann and D. Sullivan’s conjecture which we answer
positively.
In section 1 we prove that two polynomially bounded o-minimal structures ex-
panding the same real closed field R define the same metric types if and only if they
have the same valuation field. In other words, every set definable in the first one

Received September 27, 2005.
2000Mathematics Subject Classification. 03C64,14P15.
This paper is partially supported by the RAAG Network

c© 2008, Association for Symbolic Logic

0022-4812/08/7302-0005/$1.90

439



440 GUILLAUME VALETTE

is bi-Lipschitz homeomorphic to a set definable in the second one. For instance
every global subanalytic set is bi-Lipschitz homeomorphic to a semi-algebraic set.
The proof mixes some arguments of model theory with some results proved in [V2]
about polynomially bounded o-minimal structures.
In the last sectionwe study the cardinality of the family of definablemetric types in
a polynomially bounded o-minimal structure. prove that the family of metric types
of definable sets in a polynomially bounded o-minimal structure has the cardinality
of the set its valuation field. We use the notion of “Lipschitz triangulations”
introduced in [V2]. These triangulations, involve a finite number of combinatoric
data which totally capture the metric type of the singularity.
Both of these results answer the D. Sullivan and L. Siebenmann’s conjecture (see
Corollary 2.2.2 and Remark 3).

Notations and conventions. In all this paper R is a real closed field. Given two
definable functions,f, g : A→ R we will write f ∼L g (and say thatf is equivalent
to g) if there exist two positive constantsC1 andC2 inL (whereL ⊆ R is a subfield)
such that C1f ≤ g ≤ C2f. We also will write ∼ between element of ordered field
considering them as constant functions. We will say that a function is a L Lipschitz
function if it is a Lipschitz function and if the Lipschitz constant can be chosen inL.

Acknowledgements. The author is grateful to K. Kurdyka to have pointed out to
him the conjecture of [SS] and toA.Valette for her careful reading of themanuscript.

§1. On definable metric types. Let R be a real closed field. In this section M =
(Mn)n∈N will denote a polynomially bounded o-minimal structure expanding R
(see [vD] or [vD-M]). We will denote by Λ the field of exponents ofM , that is the
set of real numbers ë ∈ R such that x → xë : ]0;+∞[7→ R is definable. We shall
need some basic facts on the Stone space of complete types (see [Ma] for basic
definitions).
Given an (n+m) type p, it is possible to decompose it as a n type q overRn (just
consider the formulae involving the n first variables) and a type r overKm whereK
is an elementary extension realizing the type q (substituting the point x(q) realizing
the type q in the formulae of p). Now x(r) realizes r in an elementary extension if
and only if (x(q);x(r)) realizes p. We then write p ≃ q × r.
The set of complete types, with its topology, may be identified with the Stone
space of the set of ultrafilters of the boolean algebra of definable sets. This is
convenient to do geometry. We recall some basic facts about ultrafilters of [C] or
[BCR1, BCR2].
An ultrafilter ofMn is a collection of definable subsets satisfying:

(1) ∅ /∈ p,
(2) A and B belong to p iff A ∩ B ∈ p,
(3) A ∈ p iff Rn \ A /∈ p.

We denote by R̃n the set of definable ultrafiltres together with the topology that

makes Ũ = {p/U ∈ p}, for U ∈ Mn a basis of closed-open sets. This topology is
of course quasi-compact.
Usually we call the dimension of the ultrafilter p the least integer a such that we
can find an a-dimensional definable set V in p.
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Warning. As we said in the introduction, given a subset ofRn, by the metric type
of a set we will mean all the subsets of Rn which are bi-Lipschitz homeomorphic to
this set (i. e. which are isomorphic as metric subspaces of Rn). This should not be
confused with the notion of type above mentioned.

1.1. Some results about o-minimal structures. We shall need a result stating exis-
tence of “a good projection” for a given ultrafilter of definable sets.
We recall some resultswhich havebeen proved in [V2] and give some consequences
which will be useful for our present purpose. The first proposition we are going
to state was the keystone in the proof of existence of Lipschitz triangulations but
which will be used in the next section in another way. We write Sn for the unit
sphere in Rn+1.

Definition 1.1.1. Let A be a definable set of Rn+1. An element ë of Sn is said to
be regular for A if there exists α ∈ Q+ such that:

d (ë;T ) ≥ α

for any vector subspace T tangent to A at a smooth point of A.

Regular lines do not always exist for a given set. Nevertheless we can prove:

Proposition 1.1.2. [V2] Let A be a definable subset of Rn of empty interior. Then
there exists a definable bi-Lipschitz homeomorphism h : Rn → Rn such that h(A) has
a regular line ë ∈ Sn .

This result is true even in the case where the o-minimal structure is not polynomi-
ally bounded. We shall need another result of [V2] aboutL regular decompositions.

Proposition 1.1.3. There exists {ë1, . . . , ëN} ⊆ Sn such that for anyA1, . . . Am in
Mn+1 there exists a cellular decomposition (Ci)i∈I ofRn+1 adapted to all the setsAk ,
1 ≤ k ≤ m such that for each open cell Ci , we may find ëj(i), 1 ≤ j(i) ≤ N , regular
for the boundary of Ci .

A consequence of this proposition is the following lemma useful for us:

Lemma 1.1.4. Let q ∈ R̃n. There exists ëq ∈ Sn such that for any U in q there

exists a cell C with q ∈ C̃ and ëq regular for the boundary of C .

Proof. Suppose that for the vectors ë1, . . . , ëN given by Proposition 1.1.3 the
conclusion of the lemma fails. Thus we can find U1, . . . , Un in q containing no
regular cell for ë1, . . . , ëN respectively. Applying Proposition 1.1.3 to ∩Ni=1Ui we

can find a cellular decomposition (Ci). As q ∈ ∩Ni=1Ũi , at least one set Ci has to be
in q. But as at least one vector ëj(i) is regular with respect to the set Ci , we get a
contradiction. ⊣

Remark 1. A more sophisticated argument due to W. Pawłucki proves that the
set of lines {ë1, . . . , ëN} of Proposition 1.1.3 can be chosen as the canonical basis
of Rn. As a consequence we see that the line ëq in the above proposition can also
be chosen among the vectors of the canonical basis.

1.2. Definable metric types. It is difficult to work simultaneously with sets that
are definable in two different o-minimal structures. Definability in the first structure
might be lost through a homeomorphism that is just definable in the second. So we
will first change all the data for definable ones in the first structure and then try to
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recover the property of lipschitzianity. The following lemma says that it is possible
over a generic point p.
As we have just explained, in this section we work with two o-minimal structures
M
i = (M in)n∈N expanding R, i = 1, 2. We fix two languages Li , i = 1, 2 adding

symbols for the elements of M i with the interpretation making the elements of
M
i
n the Li definable sets of R

n. We write L for the (disjoint) union of these two

languages and keep their respective interpretation in the structure. We write R̃n for
the set of complete types of theL1 structureM 1.

Lemma 1.2.1. Let î : Rn → R be a L1 definable function and p ∈ R̃n. Assume
that î is ∼L to aL definable L Lipschitz function (with L subfield of R). Then there
exists V ∈ p such that î|V is ∼L to aL1 definable L Lipschitz function.

Proof. We prove the result by induction on n. The case n = 0 is clear. We
may assume that p is of dimension n since otherwise the result follows from the
induction hypothesis. Up to a linear change of coordinates we may assume that
the line ëp given by Lemma 1.1.4 is the first vector of the canonical basis. Let æ
be the L definable L Lipschitz function equivalent to î. Decompose p ≃ q × r

with q ∈ R̃ and r ∈ K̃ (n−1), where K is an L elementary extension of the L
structure R, realizing the type q (regarding q as a non necessarily completeL type
over R). Then î and æ extend respectively to L1 and L definable functions îK
and æK defined on Kn . Now let æq : K (n−1) → K given by x 7→ æK(x(q);x) (resp.
îq(x) = îK(x(q);x)) where x(q) is the element in K realizing the type q.
Apply the induction hypothesis to îq and æq with the type r. Note that as all the
Lipschitz constants are in R the Lipschitzness may be expressed by a L formula
with parameters in L. Thus we get aL1 function defined over an element of p and
which has bounded derivatives with respect to the (n − 1) last variables. We still
denote it by î. We now have to replace this function by an equivalent function with
a derivative with respect to the first variable bounded as well. Now as above we

decompose p ≃ q′ × r′ with q′ ∈ R̃n−1 and r′ ∈ K̃ ′ (where K ′ is anL elementary
extension of R realizing q), but here x1(r′) corresponds to the first variable in the
type p. As above we may extend î and æ to î′ and æ ′ defined on K ′ and set

æq′ (x) = æ ′(x(q′), x) and îq′(x) = î′(x(q′), x) for x ∈ K . If |
dîq′

dx (x(r
′))| ≤ C for

some C ∈ L the result is clear. Otherwise we may suppose that |
dîq′

dx (x(r
′))| ≥ C

on ]a; b[ for some C ∈ L.

Note that if the ultrafilter r′ contains no finite interval then as |
dîq′

dx (x(r
′))| ≥ C

for any C the function î cannot be equivalent at infinity to a Lipschitz function.
So we may suppose −∞ < a < b < +∞. By definability the function îq′ ,
we may assume without loss of generality that îq′ is positive and increasing over a
sufficiently small interval ]a; b[ intoK ′ belonging to r′ with a ∈ k(q′) and b ∈ k(q′).
Then we claim that

îq′(b) ∼L îq′(a). (1.1)

If not then

îq′(b) ∼L (îq′(b)− îq′(a)) ≥ C (b − a)
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(since
dîq′

dx1
≥ C ) for any C ∈ L. Note that since îq′ ∼L æq′ , if (1.1) fails we have

æq′ (b) ≥ 2æq′(a). But wemust have forC large enough |æq′(b)−æq′(a)| ≤ C (b−a),
so æq′ (b) ≤ C (b − a) for some C ∈ R. This contradicts æq′ ∼L îq′ . Thus
îq′(b) ∼L îq′(a).
But this means that îq′(x1(r

′)) ∼L îq′(a) since îq′ is increasing on [a; b]. By
Lemma 1.1.4 and choice of coordinate ëp we know that there exists a L Lips-
chitz function, say è : V → R defined over an element V ∈ q′ and satisfying
è(x(q′)) = a. This implies that î(è(x′);x′) ∼L î(x) where x = (x1;x′) ∈
Rn−1 × R and as î(è(x′);x′) is equivalent to a L definable L Lipschitz function
the result follows from the induction hypothesis. ⊣

We alsowill need a result about polynomially boundedo-minimal structurewhich
is closely related to the preparation theorem [vD-S] (see also [N], [P2]). The reader
can again find the proof in [V2].

Proposition 1.2.2. Let î : Rn → R be a positive definable function. Then there
exists a partition of Rn such that over each element of this partition the function î is
∼Q to a product of powers of distances to definable subsets of Rn.

Now we are ready to prove:

Theorem 1.2.3. LetM 1 andM 2 be two polynomially boundedo-minimal structures
over R having the same valuation field. Then any element of M 1n is bi-Lipschitz
homeomorphic to an element ofM 2n .
In other words the two languagesL1 andL2 define the same metric types.

Proof. We prove by induction the following facts:

(Hn) Let î1, . . . , îì : Rn → R be positiveL2 definable and Lipschitz functions and
let A1, . . . , Am beL2 definable subsets of Rn. Then there exists a positiveL2
definable bi-Lipschitz homeomorphism h : Rn → Rn such that each h(Ai ) is a
L1 definable subset and such that each îi ◦ h−1 is equivalent to aL1 definable
Lipschitz function.

ByProposition 1.1.2wemay assume that the boundaries of the subsetsA1, . . . , Am
are included into a finite number of graphs of L2 definable Lipschitz functions
æ1, . . . , æí : Rn → R satisfying æ1 ≤ · · · ≤ æí . By Proposition 1.2.2 there exists a
L2 definable partition (Vi) such that over each Vi each function îi is equivalent
to a product of powers of distance functions to some subsets (Wij). Consider a
cellular definable decomposition of the elements of the families (Ai) and (Wij). This
provides a partition ofRn. Apply the induction hypothesis to the family constituted
by this partition. Denote by h the obtained homeomorphism. Moreover again by
(Hn) we may assume that æ1 ◦ h−1 and (æi − æi−1) ◦ h−1, for i ≥ 2 are equivalent to
some L1 definable Lipschitz functions æ

′
1 and æ

′
i , i ≥ 2 respectively. We are going

to “lift” the homeomorphism h. It suffices to set

ĥ(x; æi(x)) = (h(x); æ
′
1(h(x)) +

i∑

j=2

æ ′j ◦ h(x)).

Then we extend the homeomorphism ĥ over the segments [æi(x); æi+1(x)], [æí(x);
+∞[ and ] −∞; æ1(x)] linearly. This defines a L1 definable function since all the
data are L1 definable. As the functions æi and æ ′i all are Lipschitz functions the
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mapping ĥ is clearly bi-Lipschitz over the graph of each function æi . Moreover as

the functions (æi−æi−1) are equivalent to æ
′
i ◦h, ĥ is bi-Lipschitz on the whole ofR

n.
Let us check that the image of the Ai areL1 definable. By construction the set Ai
is an union of subsets of the graphs æi and some bands of type

{(x;xn) ∈ R
n−1 ×R/æj(x) < xn < æj+1(x)}.

These bands are sent onto the corresponding ones defined from the functions

æ ′1 +
∑i
j=2 æ

′
j which are L1 definable subsets. As ĥ lifts h and as the induction

hypothesis has been applied to a cellular decomposition compatible with the Ai ’s
each subset Ai ∩ Γæ′i (where Γæ′i is the graph of æ

′
i ) is mapped onto a L1 definable

subset.
Now we have to check that the functions îs ◦ ĥ−1 are equivalent toL1 definable

Lipschitz functions. Fix s ≤ ì. Over each ĥ(Vi) each function îs ◦ ĥ−1 is equivalent
to a function of type

d (x; h(Ws1))
αs1 · · · (x; h(Wsr))

αsr

where the αsj are rational numbers. Since the images of theWij are L1 definable

each function îs ◦ ĥ−1 is equivalent to aL1 definable function over each ĥ(Vi).

By Lemma 1.2.1 for every p ∈ R̃n we may find a L1 definable and Lipschitz

function ès,p : U p → R which is equivalent to îs ◦ ĥ and defined over an element

U p of p. By compactness of R̃n we may extract a finite covering (Ul ) of R
n

together with corresponding functions èsl : Ul → R having the same properties as
the functions ès,p.
To complete the induction stepweare going to paste all these functions èsl : Ul→R

into a global oneL1 definable, Lipschitz and still equivalent to îs ◦ ĥ−1. By Propo-
sition 1.1.2, up to aL1 definable bi-Lipschitz homeomorphism wemay assume that
the sets Int(Ul ) are of the form

{(x′;xn) ∈ R
n−1 ×R/çl(x

′) < xn < çl+1(x
′)}

where l ∈ {0, . . . , p + 1} and çl : R
n+1 → R are L1 definable Lipschitz functions

satisfying −∞ = ç0 ≤ · · · ≤ çp+1 = +∞.

We paste the functions ès1 , . . . , è
s
k , for k ≤ p into a positive function è

′s
k , Lipschitz

and still equivalent to îs ◦ h−1, defined on ∪kl=1Ul by induction on k. Assume this

is done until k. Choose a constant C ∈ R large enough such that Cèsk+1 ≥ 2è
′s
k on

the graph of çk (recall that both functions are equivalent to îk ◦ h
−1). Let

g(x) = Cèsk+1(x
′; çk(x

′))− è
′s
k (x

′; çk(x
′))

and

è
′s
k+1(x) = Cè

s
k+1(x)−min(C

′èsk+1(x); g(x))

whereC ′ < C is a constant sufficiently big to haveg(x) ≤ C ′èsk+1(x) over the graph

of çk . It is easy to check that è
′s
k+1 is LipschitzL1 definable and coincides with è

′s
k

over the graph of çk . Hence it extends è
′s
k to a Lipschitz function over Uk+1. ⊣

Remark 2. If there is an inclusion between the two structures. That is for instance
M
1
n ⊆ M 2n , for all n ∈ N, then the proof establishes that the homeomorphism may
be chosen definable into the largest structure. In particular we have proved that
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every global analytic set is bi-Lipschitz homeomorphic to a semi-algebraic set by a
global subanalytic homeomorphism.

§2. Polynomially bounded o-minimal structures. We end this paper by giving a
theorem estimating the cardinality of the family of metric types definable in a
polynomially boundedo-minimal structure. Weprove that the set of definablemetric
types in a given polynomially bounded o-minimal structure has the cardinality of
its valuation field Λ. In particular the number of metric types of analytic sets
is countable. This answers positively a conjecture given by L. Siebenmann and
D. Sullivan in [SS].

2.1. Lipschitz triangulations. In this section we recall the notion of Lipschitz
triangulations introduced by the author in [V2]. It will be the main tool involved
in the proof of Theorem 2.2.1. Existence of such an object for a definable subset in
an arbitrary polynomially bounded o-minimal structure is also proved in [V2]. The
definition involves two objects that we need to define preliminary. The first one is
what is called standard simplicial functions. That is a finite sum of functions of type:

d (q;ó1)
α1 . . . . .d (q;ók)

αk (2.2)

where ó1, . . . , ók are simplices of R
n and α1, . . . , αk are real numbers. Indeed

Definition 2.1.2 will involve standard simplicial functions over ó × ó that is such
sums of distances involving q or another point q′.
All the standard simplicial functions that we will use will be definable. In other
words all the exponents involved will be elements of Λ. Indeed they come from the
Preparation Theorem of L. Van Den Dries and P. Speissegger [vD-S].

The second thing we shall need is what we call the tame systems of coordinates,
to express the directions along which operate contractions:

Definition 2.1.1. A tame system of coordinates on Rn is a family of functions
(ø1; . . . ;øn) of the following form:

øi(q) =
qi − èi(ði−1(q))

|èi(ði−1(q))− è ′i (ði−1(q))|
(2.3)

(and 0 whenever èi ◦ ði−1(q) = è ′i ◦ ði−1(q)) where èi and è
′
i are piecewise linear

functions on Ri−1 satisfying èi < è ′i .

Now we can state the definition:

Definition 2.1.2. A Lipschitz triangulation ofRn is the data of a finite simplicial
complex K together with a homeomorphism h : |L| → Rn, where L is a union of
open simplices of K , such that for every ó ∈ L there exist ϕó,1, . . . , ϕó,k , standard
simplicial functions over ó × ó satisfying for any q and q′ in ó:

|h(q)− h(q′)| ∼
n∑

i=1

ϕó,i(q; q
′) · |qi,ó − q

′
i,ó | (2.4)

where (q1,ó , . . . ,qn,ó) is a piecewise linear systemof coordinates ofR
n . LetA1, . . . , Ak

be subsets ofRn. ALipschitz triangulation ofA1, . . . , Ak is a Lipschitz triangulation
of Rn such that each h−1(Ai ) is a union of open simplices.
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Definable sets in polynomially bounded o-minimal structures turn out to present
the significant advantage to be triangulable in this meaning:

Theorem 2.1.3. [V2] LetA be definable subset ofRn. Then there exists a definable
Lipschitz triangulation of A.

Moreover, from the construction we can see that the vertices of the simplicial
complex K can be chosen from Qn.

2.2. How many metric types are definable. Lipschitz triangulations allows us to
count the number of definable metric types. We have just said that the vertices of the
simplicial complexes can be chosen in Qn. But such finite simplicial complexes are
countable. Therefore it is enough to count the simplicial complexes giving different
metric types.

In this sectionM denotes a polynomially boundedo-minimal structure expanding
the real field (see [vD] or [vD-M]). We also denote by Λ the field of exponent ofM ,
that is the set of real numbers ë ∈ R such that x → xë : ]0;+∞[7→ R is definable.

Theorem 2.2.1. Given a polynomially bounded o-minimal structure the number of
definable metric types has the cardinality of the set of definable exponents.

Proof. First we remark that the family of sets {(x;y) ∈ R2/y2 = |x|ë}, for
ë ∈ Λ, is of cardinality |Λ|. As two elements are not bi-Lipschitz homeomorphic it
suffices to prove that the cardinality of definable metric type is less than |Λ|.
According to Theorem 2.1.3 it suffices to bound the number of Lipschitz triangu-
lations with vertices in Qn. The number of finite such complexes is countable. All
the semi-algebraic functions are definable. This implies that Λ contains Q and so
Λ is at least countable. Given a simplicial complex the tame systems of coordinates
are determined by some subcomplexes. Each contraction ϕi,ó is characterized by
the family of exponents it involves and the family of faces involved in its expansion.
The number of possible exponents is |Λ| and the number of finite families of sub-
complexes is countable. Therefore given a simplicial complex these data browse a
range of cardinality not greater than |Λ|. ⊣

This result has the following immediate corollary answering positively a conjec-
ture of L. Siebenmann and D. Sullivan in [SS].

Corollary 2.2.2. The number of metric types of analytic germs is countable.

Remark 3. (1) Note that as the triangulations can be chosen among defin-
able mappings we have also proved that analytic germs are countable up to
subanalytic bi-Lipschitz homeomorphisms.

(2) Theorem2.1.3 states triangulability not only for the germsbut for any definable
sets. One may deduce that the metric types of global subanalytic sets are
countable. But all the analytic sets are not in an o-minimal structure.

(3) Given a semi-algebraic family the number of metric types of the elements of
the family is finite. Therefore it is easy to prove that the number of metric
types of semi-algebraic sets is countable since we may bound the complexity
of the formula defining the family. Hence Proposition 1.2.3 gives a second
proof of the countability of metric types of global subanalytic sets. But for an
arbitrary o-minimal structure this proposition is not sufficient to get a bound.



ON METRIC TYPES THAT ARE DEFINABLE IN AN O-MINIMAL STRUCTURE 447

REFERENCES

[BCR1] J. Bochnak, M. Coste, andM-F. Roy, Géométrie Algébrique Réelle, Ergebnisse der Math-
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