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Last time we proved that splitting fields exist. Today, we’ll prove that every splitting field
is unique, then discuss algebraic closures and the characteristic of a field.

Splitting fields are unique up to isomorphism

In the definition of a splitting field, it is not clear how many splitting fields there are for some
fixed f ∈ F [x]. In this section, we prove that any two such splitting fields are isomorphic.

Observation: If ϕ : F → F ′ is a homomorphism, then

ϕ̃ : F [x]→ F ′[x]

a0 + a1x+ · · ·+ anx
n 7→ ϕ(a0) + ϕ(a1)x+ · · ·+ ϕ(an)xn

is a ring homomorphism. If ϕ : F → F ′ is an isomorphism, then ϕ̃ is also an isomorphism,
and for any f ∈ F [x], it sends the ideal 〈f〉 to the ideal 〈ϕ̃(f)〉.

Proposition: Let ϕ : F → F ′ be an isomorphism, and f ∈ F [x] be irreducible in F [x]. If α is
a root of f in some extension of F , and β is a root of ϕ̃(f) in some extension of F ′, then
there is an isomorphism ψ : F (α)→ F ′(β) such that ψ(α) = β, and ψ

∣∣
F

= ϕ.

Proof: Because f is irreducible in F [x], ϕ(f) is irreducible in F ′[x]. Because ϕ̃ sends 〈f〉
to 〈ϕ̃(f)〉, the map F [x] 7→ F ′[x]/〈ϕ̃(f)〉 will have kernel equal to 〈f〉, so we have an
isomorphism

F [x]

〈f〉
→ F ′[x]

〈ϕ(f)〉
that sends a coset [q] to [ϕ̃(q)]. The composition of isomorphisms

F (α)→ F [x]

〈f〉
→ F ′[x]

〈ϕ̃(f)〉
→ F ′(β)

gives the desired isomorphism.

Example: We can apply the above proposition to the identity isomorphism Q→ Q, the polyno-
mial f(x) = x3−2 ∈ Q[x], and the roots α = 3

√
2 ∈ R and β = ξ 3

√
2 ∈ C, where ξ = e2πi/3.

The isomorphism ψ from

Q(α) = Q(
3
√

2) = {a0 + a1
3
√

2 + a2(
3
√

2)2 | ai ∈ Q}

to
Q(β) = Q(ξ

3
√

2) = {b0 + b1ξ
3
√

2 + b2(ξ
3
√

2)2 | bi ∈ Q}

is the identity on Q and sends 3
√

2 to ξ 3
√

2, so by the properties of homomorphisms it
sends

a0 + a1
3
√

2 + a2(
3
√

2)2 7→ a0 + a1ξ
3
√

2 + a2(ξ
3
√

2)2

Notice also that the irreducible factorization of f in Q( 3
√

2) is given by

f = (x− 3
√

2)(x2 − 3
√

2x+ (
3
√

2)2)



while the irreducible factorization of f in Q(ξ 3
√

2) is given by

f = (x− ξ 3
√

2)(x2 − ξ 3
√

2x+ (ξ
3
√

2)2)

and notice that ψ̃ sends (x2− 3
√

2x+( 3
√

2)2) to (x2−ξ 3
√

2x+(ξ 3
√

2)2). If we wanted to, we
could apply the proposition again, applied to the isomorphism ψ : Q( 3

√
2)→ Q(ξ 3

√
2) and

the polynomial (x2− 3
√

2x+( 3
√

2)2). The proposition would give us new field extensions of
Q( 3
√

2) and Q(ξ 3
√

2), and an isomorphism between these two extensions that agrees with
ψ (and therefore equals the identity on Q). This logic is the key idea in the proof that
splitting fields are unique.

Theorem: Let ϕ : F → F ′ be an isomorphism, and f be any polynomial in F [x]. If E is
a splitting field for f in F , and E′ is a splitting field for ϕ̃(f) in F ′, then there is an
isomorphism ψ : E → E′ such that ψ

∣∣
F

= ϕ.

Proof: Let p be an irreducible factor of f of degree ≥ 2. Let α1 ∈ E be a root of p and β1 ∈ E′

be root of ϕ̃(p). By the previous proposition, there is an isomorphism F (α1) → F ′(β1)
that restricts to ϕ on F . If we repeat this process (until f no longer has any irreducible
factors of degree ≥ 2, then we have a isomorphism F (α1, . . . , αk) → F ′(β1, . . . , βk) that
restricts to ϕ on F . Because f splits in F (α1, . . . , αk), and ϕ(f) splits in F ′(β1, . . . , βk),
it follows that E = F (α1, . . . , αk) and E′ = F ′(β1, . . . , βk), which completes the proof.

Corollary: Let F be a field, and f ∈ F [x]. Any two splitting fields for f over F are isomorphic.
Moreover, this isomorphism restricts to the identity isomorphism on F .

Proof: Apply the previous theorem to the case when F ′ = F and ϕ is the identity map.

Corollary: Let F be a field, and f ∈ F [x]. Any splitting field for f over F is algebraic.

Proof: The construction of a splitting field consists of adjoining a finite number of algebraic
elements to a field. Each of these extensions has finite degree, so the degree of the total
extension will also have finite degree, and therefore be algebraic.

Algebraic Closure

The splitting field of a polynomial is, intuitively, the field extension obtained from adjoining
all the roots of a certain polynomial to a field. As we will see, the algebraic closure of a field is
the field extension obtained by adjoining all roots of all polynomials to a field.

Proposition: Let F ⊆ E and E ⊆ K be algebraic field extensions. Then F ⊆ K is an algebraic
field extension.

Proof: It suffices to prove that [F (α) : F ] <∞ for every α ∈ K. Since α is algebraic over E,
it is the root of some polynomial e0 + e1x+ · · ·+ enx

n, where ei ∈ E. Then

[F (α, e0, e1, . . . , en) : F ] = [F (α, e0, e1, . . . , en) : F (e0, e1, . . . , en)][F (e0, e1, . . . , en) : F ]

and both terms on the right are finite (the first because α is algebraic over F (e0, . . . , en),
the second because each ei is algebraic over F ), so the term on the left is finite. Since
F (α) is a subfield of F (α, e0, . . . , en), it must have finite degree over F also.

Corollary: Let E be a field extension of F . If a, b ∈ E are algebraic over F , then so are
a + b, a − b, ab, and a/b (assuming b 6= 0). Hence the set of elements of E that are
algebraic over F is a field.



Proof: Because F (a, b) = F (a)(b) has finite degree over F (by the previous proposition), then
the subfields F (a+ b), F (a− b), F (ab), F (a/b) of F (a, b) must also have finite degree over
F , hence be algebraic extensions. Therefore, the elements a+ b, a− b, ab, and a/b must
all be algebraic over F .

Definition: Let E be a field extension of F . The algebraic closure of F in E
is the subfield of E consisting of all elements of E that are algebraic over
F . It is an algebraic extension of F .

Characteristic of a Field

Many of the fields that we study, like Q(
√

2) or R or C, have infinitely many elements, while
other fields we study, like Z5 or Z2/〈x2 + x+ 1〉, have finitely many elements. There are some
fields, such as the field of fractions of Z5[x], that have infinitely many elements, but still share
many similarities with finite fields, like the property that if you keep adding an element to
itself, you’ll eventually get zero. The definition of the characteristic of a field helps distinguish,
conceptually, between “infinite fields that really behave like infinite fields” and “fields that may
or may not be finite, but in some ways behave like finite fields.”

Definition: The characteristic of a field is the smallest positive number n such
that 1 + 1 + · · · + 1 = 0, where there are n copies of 1 written. If no such
number exists (for example, in Q) then the characteristic is zero.

Claim: The characteristic of a field is either zero or a prime number.

Proof: If the characteristic were composite, say n = ab, then the product of (1 + 1 + · · ·+ 1)
(written a times) with (1 + 1 + · · ·+ 1) (written b times) would be zero. Since fields have
no zero divisors, and n is defined to be the smallest positive integer such that n copies of
1 added together equals zero, this gives the contradiction.


