1. Let \(f \) be an \(L^p \) function on \(\mathbb{R} \). If \(p > 4/3 \), prove that
\[
\lim_{t \to 0^+} \int_0^t x^{-1/4} f(x) \, dx = 0.
\]

2. Let \(A, B \) be measurable subsets of \([0, 1]\) with \(m(A) = m(B) = 1/4 \). For any real number \(t \), let \(B_t \) denote the translation of \(B \) by \(t \). In other words, \(B_t = \{ b + t \} _{b \in B} \).

Prove that there exists \(t \in \mathbb{R} \) so that \(m(A \cap B_t) > \frac{1}{1000} \).

3. Give an example of a sequence of functions \(f_i \in L^2(\mathbb{R}) \) with \(\|f_i\|_{L^2} = 1 \), \(\text{supp}(f_i) \subset [0, 1] \), and with \(f_i \to 0 \) weakly in \(L^2 \). Prove that your example has all the desired properties.

4. Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is a Schwartz function, and that \(|\hat{f}(\omega)| \leq 1 \) and \(|\hat{f}(\omega)| \leq |\omega|^{-4} \). Prove that \(|f(3) - f(1)| < 1000 \).