(1) (a) Define what is meant by weak convergence of a sequence of vectors \(\{x_n\} \) in a Banach space \(X \).

(b) Suppose \(\{x_n\} \) is a sequence of vectors in the Banach space \(l^1 \) which converges weakly. Prove that it also converges in norm. \((l^1 \text{ is the space of absolutely summable sequences of complex numbers.})\)

(c) Show by example that the result in the previous question fails in \(l^p \) for \(1 < p < \infty \) and also in \(L^1(m) \), where \(m \) denotes Lebesgue measure on the unit interval.

(d) Can there be a continuous linear map, with a continuous inverse, from \(l^1 \) to \(L^1(m) \)? Justify your answer.

(2) Suppose \(\{e_n, \ n = 1, 2, \ldots \} \) is an ortho-normal basis for an infinite dimensional Hilbert space \(\mathcal{H} \). Let \(\{\delta_n\} \) be a fixed sequence of positive reals and let \(K \) denote the set of vectors \(x \in \mathcal{H} \) such that \(|\langle x, e_n \rangle| \leq \delta_n \) for all \(n \). Show that \(K \) is compact if and only if \(\sum n \delta_n^2 < \infty \).

(3) (a) Suppose \(X \) is a normed vector space. Show that \(X \) is complete if and only if every absolutely convergent series in \(X \) converges in norm. \((\sum x_n \text{ is called absolutely convergent if } \sum \|x_n\| < \infty.\)

(b) Show that \(L^p(X, m) \) is complete for \(1 < p < \infty \). Here \((X, m) \) denotes any measure space.

(4) In this problem \(T \) denotes the 1-torus \(\mathbb{R}/2\pi\mathbb{Z} \) equipped with normalized Lebesgue measure, \(f \in L^1(T) \) and \(a_n = \hat{f}(n) \) is the \(n \)-th Fourier co-efficient. \(C^1(T) \) denotes the space of all functions on \(T \) which are continuously differentiable when viewed as \(2\pi \)-periodic functions on the line.

(a) If \(f \in C^1(T) \) show that \(\sum_{n \in \mathbb{Z}} n^2 |a_n|^2 < \infty \).

(b) If \(\sum_{n \in \mathbb{Z}} |n||a_n| < \infty \) show that \(f \in C^1(T) \).