University of Toronto
Department of Mathematics
Real Analysis Examination
Tuesday, September 6, 2005, 1–3 p.m.
Duration 2 hours

No aids allowed.
All questions are equal in value.

1. Let \(\mu \) denote Lebesgue measure on the unit interval \([0, 1]\) and \(\mathcal{B} \) the \(\sigma \)-algebra of Lebesgue measurable subsets of \([0, 1]\). Given sets \(A, B \in \mathcal{B} \) define \(d(A, B) = \mu(A \Delta B) \). \((A \Delta B \) denotes the symmetric difference.) Show that \(d \) is a pseudo-metric on \(\mathcal{B} \) and hence defines a metric on the space \(\mathcal{B} \) of equivalence classes of sets in \(\mathcal{B} \) modulo null sets. Show that this metric is complete. Give an example to show that it is not compact.

2. Suppose \(x_n \) is a sequence of vectors in a Hilbert space \(\mathcal{H} \) which converges weakly to a limit \(x \).
 (a) Show that \(\|x_n\| \) is bounded.
 (b) Show that there is a subsequence \(\{x_{n_i}\} \) such that \(\frac{1}{N} \sum_{i=1}^{N} x_{n_i} \) converges in norm to \(x \). Suggestion: show that without loss of generality one may take \(x = 0 \). After \(x_{n_j} \) has been chosen for \(j < i \) choose \(x_{n_i} \) so that \(\langle x_{n_i}, x_{n_j} \rangle < 2^{-i} \) for all \(j < i \). Use this to estimate \(\|\sum_{i=1}^{N} x_{n_i}\| \).
 (c) Use part (b) to show that any convex norm-closed subset of \(\mathcal{H} \) is weakly closed.

3. Suppose \(\alpha \) is any irrational number and define a transformation \(T \) from the 1-torus \(\mathbb{T} = \mathbb{R}/\mathbb{Z} \cong [0, 1) \) to itself by \(Tx = x + \alpha \). The addition is in \(\mathbb{R}/\mathbb{Z} \), that is \(Tx \) is the fractional part of \(x + \alpha \) as a transformation of \([0, 1)\). Let \(\mu \) denote Lebesgue measure on \(\mathbb{T} \). If \(f \in L_2(\mu) \) and \(f = f \circ T \) show that \(f \) is (almost everywhere) equal to a constant function. Hint: expand \(f \) in a Fourier series.

4. Show that any norm-closed subspace of a normed vector space is weakly closed. By considering \(c_0(\mathbb{N}) \subset l_\infty(\mathbb{N}) \) show that a norm-closed subspace of the dual of a normed vector space need not be closed in the weak-* topology.