No aids allowed.
Do as many questions as you can. An expected perfect result is 60 pts or higher.

(1) a) Prove that the quotient of a group G by its center $Z(G)$ is a cyclic group if and only if G is Abelian, i.e. $G = Z(G)$. (5 pts)
 b) Classify all groups of order 8. (5 pts)

(2) a) Prove that for a group G its commutant H is the maximal Abelian quotient of G. (5 pts)
 b) Consider the symmetric group S_n. Prove that there are exactly 2 different group maps from S_n to the multiplicative group of complex numbers \mathbb{C}^*. (5 pts)

(3) Let \mathbb{F} be a finite field with q elements. Consider a finite dimensional vector space \mathbb{F}^n over \mathbb{F}. Denote the group of linear automorphisms of \mathbb{F}^n (resp. the group of non-strictly upper triangular automorphisms of \mathbb{F}^n) by G (resp. by B).
 a) Prove that any element of B is a product of a diagonal element and several elements of the form A_{ij}, $i < j$. Here A_{ij} denotes the elementary matrix with units on the diagonal and the only non-zero non-diagonal entry placed in the box (i, j). (5 pts)
 b) Find the number of double cosets of G by B. (10 pts)

(4) Consider the set \mathcal{N} of nilpotent square matrices over \mathbb{C} of the size n. The group $GL(n)$ acts on \mathcal{N} by conjugation. Classify the orbits. (10 pts)

(5) Let A be a commutative ring. Prove that a polynomial $f(x) \in A[x]$ is invertible in $A[x]$ if and only if its constant term is
invertible in A and the rest of the coefficients are nilpotent in A. (15 pts)

(6) Let V be a vector space of dimension n. Consider an invertible linear map $A: V \to V$.

a) Give the definition of the exterior powers $\Lambda^k(V)$. (5 pts)

b) Let $\Lambda^{n-1}(A)$ be the corresponding automorphism of $\Lambda^{n-1}(V)$ (it takes $v_1 \wedge \ldots \wedge v_{n-1}$ to $A(v_1) \wedge \ldots \wedge A(v_{n-1})$). Find the determinant of $\Lambda^{n-1}(A)$ as a function of $\det(A)$. (10 pts)

(7) a) Define the n-th cyclotomic polynomial $\Phi_n(x)$ over \mathbb{Q}. (5 pts)

b) Find explicitly $\Phi_{15}(x)$. (5 pts)

(8) Determine the splitting field and its degree over \mathbb{Q} for the polynomial $x^6 - 4$. (10 pts)

(9) a) Classify the finite Galois extensions of a finite field \mathbb{F}_p. State the description of the Galois groups for the extensions. (5 pts)

b) Let $q = p^n$. Prove that the multiplicative group of the field \mathbb{F}_q is cyclic. (5 pts)

c) Prove that for any m there exists an irreducible polynomial of degree m over \mathbb{F}_p. (5 pts)