DEPARTMENT OF MATHEMATICS
University of Toronto

Algebra Exam (3 hours)

January 1995

1. \(G \) is a non-abelian group of order 21.
 (a) Prove that \(G \) is not simple.
 (b) Describe a composition series for \(G \).
 (c) Must \(G \) be solvable? (Justify your answer.)
 (d) Must \(G \) be nilpotent? (Justify your answer.)

2. (a) \((A, +)\) is an abelian group, and \(S \subset A \). For each abelian \(M \) and map \(\varphi: S \to M \), there is a homomorphism \(\Phi: A \to M \) whose restriction to \(S \) is \(\varphi \). Does it follow that \(A \) is free abelian?
 (b) How many (isomorphism classes of) abelian groups of order 168 are there?
 (c) Prove that \(\mathbb{Z}[x, y]/(x^2 - y^2) \) is a Noetherian ring.
 (d) Prove that \(\mathbb{Z}_2[x]/(x^3 - 1) \cong \mathbb{Z}_2 \times F_4 \), where \(F_4 \) is a field of order 4.

3. \(R \) is a principal ideal domain, and \(M \) is a finitely generated \(R \)-module.
 (a) Explain briefly the meaning of each of the following:
 (a.1) \(M \) has free rank \(r \).
 (a.2) \(M \) has invariant factors \(d_1, \ldots, d_k \).
 (b) If \(M = A_1 \oplus \cdots \oplus A_s \), where the \(A_i \) are non-zero cyclic \(R \)-modules, show that the number \(k \) of invariant factors of \(M \) is no more than \(s \).

4. \(U \) is a vector space (over the field \(F \)) with basis \(B = \alpha_1, \ldots, \alpha_r, \beta_{r+1}, \ldots, \beta_n \), and \(f: U \to U \) is a linear transformation whose kernel is the span of \(\beta_{r+1}, \ldots, \beta_n \).
 (a) Describe a basis of \(U \otimes F \) in terms of \(B \).
 (b) Describe the map \(f \otimes f: U \otimes F \to U \otimes F \).
 (c) Find a basis of the kernel of \(f \otimes f \).
5. (a) Show that the ring $\mathbb{Z}[i]$ of Gaussian integers is a Euclidean domain.
 (b) State the factorization of 5 as a product of primes in $\mathbb{Z}[i]$.
 (c) Explain why $F = \mathbb{Z}[i]/(1 + 2i)$ is a finite field, and find $|F|$.

6. (a) If K is the splitting field over \mathbb{Q} of an irreducible polynomial of degree n, and G is the Galois group of K over \mathbb{Q}, explain why G is (isomorphic to) a subgroup of the symmetric group S_n.
 (b) If K is the splitting field of $x^3 - 4x^2 - 6$ over \mathbb{Q}, find the Galois group of K over \mathbb{Q}.

7. Let R_n ($n = 1, 2, \ldots$) be rings, and put $S_k = R_1 \times \cdots \times R_k$ and $S_\infty = \prod_{n=1}^{\infty} R_n$. Denote by ε_i the function $R_i \to S_k$ ($1 \leq i \leq k \leq \infty$) such that $\varepsilon_i(x)$ has ith coordinate x and all other coordinates zero.
 (a) If J is a minimal left ideal of some R_i ($1 \leq i \leq k$), show that $\varepsilon_i(J)$ is a minimal left ideal of S_k, and that every minimal left ideal of S_k is of this form.
 (b) If each R_i is semisimple, show the S_k are semisimple ($1 \leq k < \infty$).
 (c) Under what conditions is S_∞ semisimple? (Justify your answer.)

N.B. Each ring R is required to have an identity element, and modules and ring homomorphisms are required to be unitary.