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The main part of the thesis is applications of the Strong Artin conjecture to num-

ber theory. We have two applications. One is generating number fields with extreme

class numbers. The other is generating extreme positive and negative values of Euler-

Kronecker constants.

For each number field K of degree n, there is the Artin L-function L(s, ρ) = ζK(s)
ζ(s)

attached to K. When L(s, ρ) is an entire function and has a zero-free region [α, 1] ×

[−(logN)2, (logN)2] where N is the conductor of L(s, ρ), we can estimate logL(1, ρ) and

L′

L
(1, ρ) as a sum over small primes:

logL(1, ρ) =
∑

p≤(logN)k

λ(p)p−1 +Ol,k,α(1)

L′

L
(1, ρ) = −

∑
p≤x2

λ(p) log p

p
+Ol,x,α(1).

where 0 < k < 16
1−α and (logN)

16
1−α ≤ x ≤ N

1
4 . With these approximations, we can study

extreme values of class numbers and Euler-Kronecker constants.

Let K(n,G, r1, r2) be the set of number fields of degree n with signature (r1, r2) whose

normal clousres are Galois G extension over Q. Let f(x, t) ∈ Z[t][x] be a parametric

polynomial whose splitting field over Q(t) is a regular G extension. By Cohen’s theo-

rem, most specialization t ∈ Z corresponds to a number field Kt in K(n,G, r1, r2) with

signature (r1, r2) and hence we have a family of Artin L-functions L(s, ρ, t). By counting
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zeros of L-functions over this family, we can obtain L-functions with the zero-free region

above.

In Chapter 1, we collect the known cases for the Strong Artin conjecture and prove

it for the cases of G = A4 and S4. We explain how to obtain the approximations of

log(1, ρ) and L′

L
(1, ρ) as a sum over small primes in detail. We review the theorem of

Kowalski-Michel on counting zeros of automorphic L-functions in a family.

In Chapter 2, we exhibit many parametric polynomials giving rise to regular exten-

sions. They contain the cases when G = Cn, 3 ≤ n ≤ 6, Dn, 3 ≤ n ≤ 5, A4, A5, S4, S5

and Sn, n ≥ 2.

In Chapter 3, we construct number fields with extreme class numbers using the para-

metric polynomials in Chapter 2.

In Chapter 4, We construct number fields with extreme Euler-Kronecker constants

also using the parametric polynomials in Chapter 2.

In Chapter 5, we state the refinement of Weil’s theorem on rational points of algebraic

curves and prove it.

The second topic in the thesis is about simple zeros of Maass L-functions. We consider

a Hecke Maass form f for SL(2,Z). In Chapter 6, we show that if the L-function L(s, f)

has a non-trivial simple zero, it has infinitely many simple zeros. This result is an

extension of the result of Conrey and Ghosh [14].
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Chapter 1

Artin L-functions

1.1 The strong Artin Conjecture

Let ρ be an n-dimensional irreducible representation of G = Gal(K/Q) for an Galois

extension K/Q. Artin conjectured that the Artin L-function L(s, ρ) is a holomorphic

function on the complex plane and it is called the Artin Conjecutre. Langlands conjec-

tured that L(s, ρ) actually is automorphic, i.e. L(s, ρ) = L(s, π) for a cuspidal automor-

phic representation π of GL(n)/Q. Since a cuspidal automorphic L-function is entire,

Langlands’s prediction implies the Artin Conjecutre so it is called the strong Artin Con-

jecture.

For several cases, the strong Artin Conjecture is known to be true. For the one-

dimensional representations, the strong Artin conjecture is true. By Langlands and

Tunnell, the strong Artin Conjecture is true for 2-dimensional representations of solvable

groups. When the projective image of two-dimensional odd representation ρ is isomorphic

to A5, then L(s, ρ) is automorphic by the recent work of Khare and Wintenberger [35].

Here we prove that the strong Artin Conjecture is true for the three-dimensional

representations for Gal(K/Q) = S4 and A4.

Proposition 1.1. Let K be a number field such that G = Gal(K/Q) is isomorphic
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Chapter 1. Artin L-functions 2

to S4 or A4. Then, for any irreducible representation ρ of G = Gal(K/Q), its Artin

L-function L(s,K/Q, ρ) is automorphic. Especially, the strong Artin Conjecture for

S4 andA4 case is true.

Before proving Proposition 1.1, we introduce another proposition. We find an idea of

this proof from Wang [69].

Proposition 1.2. Let φ be an octahedral (resp, a tetrahedral) representation of GQ

and let G denote φ(GQ). Then G is isomorphic to (GL(2, F3) × C2m)/{±(I, 1)},(resp,

(SL(2, F3)× C2m)/{±(I, 1)}) where Z(G) ∼= C2m, the cyclic group of order 2m.

Hence each irreducible representation Φ of G can be expressed uniquely as (Φ0, µ),

where Φ0 = Φ |GL(2,F3) is an irreducible representation of GL(2, F3) (resp, SL(2, F3) )

and µ = Φ |C2m is a character of C2m and such that Φ0(−I) = µ(−1)I. Furthermore,

each such pair (Φ0, µ) gives an irreducible representation of G.

Proof. First S4 case.

We consider the 2-dimensional representation Ψ of GL(2, F3) = SL(2, F3)o < a >

defined by

Ψ

 −1 1

−1 0

 =

 −1 1

−1 0

,Ψ

 1 −1

1 1

 =

 1 −1

−
√
−2 −1 +

√
−2

.

This induces an embedding Σ of PGL(2, F3) = PSL(2, F3)o < a > into PGL(2,C),

where a is the projective image of a in PGL(2, F3).

Now let φ be the projective representation from an octahedral representation φ. Then

φ factors through a Galois group isomorphic to PGL(2, F3). Via isomorphisms, we

identify it with PGL(2, F3) and φ(PGL(2, F3)) with Σ(PGL(2, F3)).

The image ofG′ = [G,G], a commutator subgroup ofG, in PGL(2,C) is Σ(PSL(2, F3))

because [S4, S4] = A4. Since det(G′) = 1 and A4 has no irreducible 2-dimensional repre-

sentation, we have Z(G′) = {±I}. So G′ is Ψ(SL(2, F3)) which is isomorphic to the cen-

tral extension SL(2, F3) of PSL(2, F3) by {±I}. Then {G′×C2m}/±(I, 1), where C2m is
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Z(G), is the pre-image of Σ(PSL(2, F3)) and it becomes a normal subgroup of G with in-

dex 2. Since PGL(2, F3) = PSL(2, F3)o < a >, Σ(PGL(2, F3)) = Σ(PSL(2, F3))oΣ(<

a >). Since the image in PGL(2,C) is determined by modulo Z(G) ∼= C2m, G also

contains Ψ(< a >). So finally we have G ∼= {G′ × C2m}/ ± (I, 1) o Ψ(< a >) ∼=

{(Ψ(PGL(2, F3)) o Ψ(< a >))× C2m}/± (I, 1) ∼= (GL(2, F3)× C2m)/{±(I, 1)}.

Second A4 case.

If det(g) = 1 for all g ∈ G, then we have G ∼= SL(2, F3). If not, we claim that G′ ∼= Q8,

where Q8 is a quaternion group. To see this, its image in PGL(2,C) is isomorphic to V ,

the Klein 4-group. Since V can not be embedded into GL(2,C) with property det = 1,

G′ is isomorphic to a central extension of V by Z/2Z. There are 3 non-split central

extensions of V by Z/2Z: C4 × C2, D8 and Q8. Since C4 × C2 is abelian, it should be

excluded. And if D8 = {r4 = 1, s2 = 1, srs = r3} is embedded into GL(2,C) with

property det = 1, it induce a contradiction. Because det(s) = 1, s2 = I implies s = −I,

we have r2 = I. So it is a contradiction.

Since SL(2, F3) = H o K where H ∼= Q8 and K =< b > for some b of order 3, by

the similar argument above, we have G ∼= (SL(2, F3)× C2m)/{±(I, 1)}

The other part of the proposition is easily followed.

Proof of Proposition 1.1:

Since Gal(K/Q) ∼= S4, using an embedding of S4 into PGL(2,C), we have a projective

representation ω : GQ −→ PGL(2,C). Since H2(GQ,C∗) = {1}, there exists a lifting

ω of ω. Then by Proposition 4, ω factor through Gal(K̃/Q) which is isomorphic to

(GL(2, F3)× C2m)/{±(I, 1)} for some m ≥ 1.

By Proposition 1.2, the irreducible representations of Gal(K̃/Q) are suitable twists

of irreducible representations of GL(2, F3). Since every irreducible representation of

GL(2, F3) is automorphic (See Kim [37] for relevant references), so is that of Gal(K̃/Q).

Since (χ1, 1), (χ
′
1, 1), (χ

′
2, 1), (χ3, 1),(χ

′
3, 1) are irreducible representations of Gal(K̃/Q)

which factor through S4, Proposition 1.1 follows. The proof of A4 case is essentially the
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same.

Remark 1.3. Proposition 1.1 is well-known to the experts, at least implicitly, under

the assumption of the existence of the double cover K̃/K where Gal(K̃/Q) is GL(2, F3)

and it is stated in Kim ([37], p.100). What is new is the observation that K always has

a central extension K̃ such that Gal(K̃/Q) ∼= (GL(2, F3) × C2m)/±(I, 1) and so every

3-dimensional representation attached to K is equivalent to a twist of a symmetric square

of 2 dimensional representation of GL(2, F3).

Recently, Calegari obtained the modularity of S5 Galois representations for a special

case.

Theorem 1.4 (Calegari [5]). Let K/Q be a quintic extension with Gal(K̂/Q) = S5.

Furthermore, we assume that

1. Complex conjugation in Gal(K̂/Q) = S5 has conjugacy class (12)(34).

2. The extension K̂/Q is unramified at 5 and the Frobenius element Frob5 has con-

jugacy class (12)(34).

If ρ : Gal(K̂/Q) −→ GLn(C) be an irreducible representation of dimension 4 or 6, then

ρ is modular.

Remark 1.5. The modularity of the 4 dimensional representation ρ is considered by Y.

Zhang [71] in his PhD thesis. He observed that ρ is equivalent to a character twist of

Asai lift of σ, where σ is an icosahedral representation over F , the quadratic subextension

over Q. Calegari also proved it and used the result of S. Sasaki [57] on the muldarity of

σ to prove the modularity of ρ.

1.2 Approximation of logL(1, ρ) and L′

L (1, ρ)

When an Artin L-function L(s, ρ) has a zero-free region, we can approximate logL(1, ρ)

and L′

L
(1, ρ) as a summation over small primes. The following proposition by Daileda is
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crucial for these two approximations.

Proposition 1.6 (Daileda, Corolloary 4 in [18]). Let F/Q be a finite Galois exten-

sion and let ρ be an l-dimensional complex representation of Gal(F/Q) of conductor

N . Let 6/7 < α < 1. If L(s, ρ) is entire and is free from zeros in the rectangle

[α, 1]× [−(logN)2, (logN)2] and N is sufficiently large, then

1

2πi

∫
(2)

L′

L
(s+ u, ρ)Γ(s)xs ds− L′

L
(u, ρ)�l

x2

(1− α)2
√
N

+
(logN)2

(1− α)3x(1−α)/8

for 1 ≤ u ≤ 3/2 and x ≥ 1.

As an application of Proposition 1.6, Daileda approximates logL(1, ρ). We copy the

proof in [18] for the sake of completeness. Let

L(s, ρ) =
∏
p

L(s, ρ)p =
∞∑
n=1

λ(n)n−s, L(s, ρ)p =
n∏
i=1

(1− αi(p)p−s)−1.

Then λ(p) =
∑n

i=1 αi(p), and |λ(p)| ≤ n.

By Mellin inversion of Γ(s) and logarithmic derivative of L(s, ρ),

1

2πi

∫
(2)

L′

L
(s+ u, ρ)Γ(s)xsds = −

l∑
i=1

∑
p

log p
∞∑
k=1

αi(p)
kp−kue−p

k/x.

Substitute this to Proposition 1.6 and integrate from u = 1 to u = 3/2. Then we

have∑
p

λ(p)p−1e−p/x − logL(1, ρ) + logL(3/2, ρ)�l
x2

(1− α)2
√
N

+
(logN)2

(1− α)3x(1−α)/8
.

Here we used the fact that the terms for k ≥ 2 converge absolutely.

If y < x then,∑
p≤y

p−1(1− e−p/x) < 1,
∑
p>x2

p−1e−p/x � 1 and
∑

y≤p≤x2
p−1e−p/x = log

(
2 log x

log y

)
+O(1).

Take x = (logN)16/(1−α) and y = (logN)k with 0 < k < 16/(1 − α). Since

logL(3/2, ρ)� 1, we have

logL(1, ρ) =
∑

p≤(logN)k

λ(p)p−1 +Ol,k,α(1)

and it is summarized as follows.
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Proposition 1.7 (Daileda, Proposition 2 in [18]). Let L(s, ρ) and N be as above. Let

6
7
< α < 1. Suppose that L(s, ρ) is zero-free in the rectangle [α, 1]× [−(logN)2, (logN)2].

If N is sufficiently large, then for any 0 < k < 16
1−α ,

logL(1, ρ) =
∑

p≤(logN)k

λ(p)p−1 +Ol,k,α(1).

Now we want to approximate L′

L
(1, ρ). Set u = 1 in Proposition 1.6. Then

−L
′

L
(1, ρ) +

1

2πi

∫
(2)

L′

L
(s+ 1, ρ)xsΓ(s)ds� x2

(1− α)2
√
N

+
(logN)2

(1− α)3x(1−α)/8
. (1.8)

By taking logarithmic derivative of L(s, ρ) and the Mellin inversion of Γ(s), we have

− 1

2πi

∫
(2)

L′

L
(s+ 1, ρ)Γ(s)xs ds =

l∑
i=1

∑
p

log p
∞∑
k=1

αi(p)
kp−ke−p

k/x.

Since the terms for k ≥ 2 converge absolutely, we only need to estimate

∑
p

λ(p)
log p

p
e−

p
x .

Let x be a constant with (logN)
16

1−α ≤ x ≤ N
1
4 . Then the error term in (1.8) is

Ol,x,α(1). On the other hand,

∑
p≤x

log p

p
(1− e−p/x) < 1,

∑
p>x2

log p

p
e−p/x � 1.

Hence we obtain an approximation of L′

L
(1, ρ) as a sum over a short interval and it is

summarized as follows:

Proposition 1.9. Suppose that L(s, ρ) is entire and free from zeros in the rectangle

[α, 1] × [−(logN)2, (logN)2]. If N is sufficiently large, then for any constant x with

(logN)
16

1−α ≤ x ≤ N
1
4 ,

L′

L
(1, ρ) = −

∑
p≤x2

λ(p) log p

p
+Ol,x,α(1).
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Due to lack of GRH, we cannot use Proposition 1.7 and 1.9 directly. We extend the

result of Kowalski-Michel [39] to isobaric automorphic representations of GL(n).

Let n = n1 + · · ·+nr, and let S(q) be a set of (π1, ..., πr), where πi is a cuspidal auto-

morphic representation of GL(ni)/Q which satisfies the Ramanujan-Petersson conjecture

at the finite places for each i, such that

(1) There exists e > 0 such that for (π1, ..., πr) ∈ S(q), Cond(π1) · · ·Cond(πr) ≤ qe;

(2) There exists d > 0 such that |S(q)| ≤ qd.

(3) The Γ factors of πi are of the form
∏ni

j=1 Γ( s
2

+ αj), where αj ∈ R.

Note that for (π1, ..., πr) ∈ S(q), π = π1 � · · ·� πr is an isobaric automorphic repre-

sentation of GL(n)/Q, and Cond(π) = Cond(π1) · · ·Cond(πr). So we can think of S(q)

as a finite set of isobaric automorphic representations of GL(n)/Q.

Let, for α ≥ 3
4
, T ≥ 2,

N(π;α, T ) = |{ρ : L(ρ, π) = 0, Re(ρ) ≥ α, |Im(ρ)| ≤ T}|.

Then clearly, N(π;α, T ) = N(π1;α, T ) + · · ·+N(πr;α, T ).

Theorem 1.10. For some B ≥ 0,

∑
π∈S(q)

N(π;α, T )� TBqc0
1−α
2α−1 .

One can choose any c0 > c′0, where c′0 = 5n′e
2

+ d and n′ = max{ni}1≤i≤r.

Proof. Let S(q)i be the set of the cuspidal automorphic representation πi of GL(ni)/Q

such that there exist π1, ..., πi−1, πi+1, ..., πr and (π1, ..., πi−1, πi, πi+1, ..., πr) ∈ S(q). Then

clearly, Cond(πi) ≤ qe and |S(q)i| ≤ qd. So

∑
π∈S(q)

N(π;α, T ) =
r∑
i=1

∑
πi∈S(q)i

N(πi;α, T ).

Now we apply the result of Kowalski-Michel [39] to the inner sum. They assumed that

the Gamma factors of πi are the same. However, the assumption is used only to obtain
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the convexity bound (Lemma 10 of [39]), and our Γ-factors provide the same convexity

bound. Hence our result follows.

In the following, we apply the above result to a family of Artin L-functions. In this

case, the Γ-factors are a product of Γ( s
2
) and Γ( s+1

2
).



Chapter 2

Regular extensions and Parametric

polynomials

This chapter is based on [6], [7] and [8]. We follow closely [6], [7] and [8].

A finite extension E of the rational function field Q(t) is called regular if Q∩E = Q.

Suppose f(x, t) is an irreducible polynomial of degree n, and gives rise to a regular Galois

extension over Q(t) with the Galois group G. Let Kt be a field obtained by adjoining to

Q a root of f(x, t) with a specialization t ∈ Z and let K̂t be the Galois closure of Kt. Let

C be any conjugacy class of G. Serre observed the following important fact, regarding

distribution of Frobenius elements in a regular Galois extension ([63], page 45).

Theorem 2.1. There is a constant k > 0 depending on f(x, t) such that for any prime

p ≥ k, there is tC ∈ Z so that for any t ≡ tC (mod p), p is unramified in K̂t/Q, and

Frobp ∈ C.

We want to construct regular extensions E over Q(t) as a splitting field of f(x, t) ∈

Z[t][x] over Q(t). Let K(n,G, r1, r2) be the set of number fields of degree n with signature

(r1, r2) whose normal closures are G Galois extension over Q. Assume that f(x, t) of

degree n gives rise to an G Galois extension over Q(t) which is also regular. By Hilbert’s

irreducibility theorem, for infinitely many specialization t ∈ Z, we have number fields

9
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of degree n whose normal closures are G Galois extensions over Q. Moreover, Cohen

obtained a quantitative version of Hilbert’s irreducibility theorem. His theorem is valid

in a very general setting. We paraphrase it into our special case. For f(x, t) ∈ Z[t][x], we

define the height |f | of f to be the maximum of absolute values of the integral coefficients

unless this quantity is less than 8, in which case put |f | = 8 and let ‖f‖ = log |f |.

Theorem 2.2 (Cohen [12], Theorem 2.1 ). Let f(x, t) ∈ Z[t][x] be a non-zero polynomial

of total degree not exceeding n in the indeterminate x with Galois group G over Q(t).

Then, provided N > |f |c, the number of α ∈ {t ∈ Z||t| ≤ N} for which G(α), the Galois

group of f(x, α) over Q, differs from G does not exceed

|f |c/3N1/2 logN

where c = c(n). Indeed, if actually N > exp(c‖f‖2), then the number of exceptional α

does not exceed cN1/2 logN .

By Cohen’s theorem, once we find a polynomial f(x, t) giving rise to a regularGGalois

extension, we also have number fields K ∈ K(n,G, r1, r2) for some suitable signature

(r1, r2).

Remark 2.3. To apply Theorem 2.2, the total degree of f(x, t) should not exceed the

degree of x. In section 2.1.3, the total degree of the simplest quintic polynomial is 6

which is bigger than 5. However, we don’t need Theorem 2.2 in the case because the

Galois group of f(x, α) is C5 for all α ∈ Z.

Also we have to compute an upper bound of regulators of number fields we constructed

when we estimate the class numbers. In many cases, it is crucial to know the locations

of roots of the polynomial f(x, t) to determine independence of units and find an upper

bound of regulators. We introduce the following lemma from [52],[60].

Lemma 2.4. Let f be a polynomial of degree m and f(α) 6= 0, f ′(α) 6= 0. Then for

every circle C passing through α, α − mf(α)
f ′(α)

, at least one root of f is inside of C, and

one root outside of C.
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2.1 Cyclic groups

Let f(x, t) = xn + a1(t)xn−1 + · · ·+ an−1(t)x± 1 be an irreducible polynomial over Q(t)

such that ai(t) ∈ Z[t]. Suppose f(x, t) gives rise to a cyclic extension over Q(t), and if

t ∈ Z, it gives rise to a totally real extension over Q. For each integer t > 0, let Kt be the

cyclic extension over Q. Let Gal(Kt/Q) = {1, σ, σ2, ..., σn−1}. Let θ be a root of f(x, t).

Then θ, σ(θ), ..., σn−1(θ) are roots of f(x, t).

We show that if n = p is a prime, σ(θ), ..., σp−1(θ) form independent units, and the

regulator of Kt is small. By definition, the regulator of Z[θ] is

R = | det(log |σi+j(θ)|)1≤i,j≤p−1|.

Theorem 2.5. (1) R 6= 0, and (2) R� (log t)p−1.

Proof. By Lemma 5.26 in [70], we have

R =
1

p

∏
χ 6=1

(
p−1∑
i=0

χ(σi) log |σi(θ)|

)
,

where the product runs over the nontrivial characters of Gal(Kt/Q).

Since t−c � σi(θ) � td for some c, d > 0 depending only on f(x, t), | log |σi(θ)|| �

log t. Hence (2) follows.

Since θ · σ(θ) · · ·σp−1(θ) = ±1,

log |θ|+ log |σ(θ)|+ · · ·+ log |σp−1(θ)| = 0.

Hence we write
p−1∑
i=0

χ(σi) log |σi(θ)| =
p−1∑
i=1

(χ(σi)− 1) log |σi(θ)|.

Since p is a prime, by [19], σ(θ), . . . , σp−1(θ) are multiplicatively independent. Hence

log |σ(θ)|, . . . , log |σp−1(θ)| are linearly independent over Q. By Baker’s theorem [2], they

are linearly independent over Q.
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Since χ(σi) are roots of unity and χ 6= 1, one of χ(σi)− 1 is not zero. Hence

p−1∑
i=1

(χ(σi)− 1) log |σi(θ)| 6= 0.

Remark 2.6. If n is not a prime, we still have R � (log t)n−1. However, R = 0 for a

composite number n. We show this for simplest quartic and sextic fields.

2.1.1 Simplest Cubic Fields

It was Shanks [64] who introduced Simplest cubic fields parameterized by

f(x, t) = x3 − tx2 − (t+ 3)x− 1,

for t ∈ Z+. Its discriminant is g(t)2 with g(t) = t2 + 3t+ 9.

2.1.2 Simplest Quartic Fields

Consider totally real cyclic quartic fields Kt generated by a root of

f(x, t) = x4 − tx3 − 6x2 + tx+ 1, t ∈ Z+.

Here Disc(f(x, t)) = 4(t2 + 16)3. This polynomial is studied by Lazarus. We refer to his

PhD thesis [41] for the detail.

We can express the 4 roots of f(x, t) explicitly.

θ1,2,3,4 = ±
4
√
t2 + 16

√√
t2 + 16± t

2
√

2
±
√
t2 + 16

4
+
t

4
, t 6= 0, 3

where the second and third ambiguous signs agree.

Let θ1 be the largest root by choosing + for all signs. The Galois group action on the

roots is given by

σ : θj 7→
θj − 1

θj + 1
= θj+1, j = 1, 2, 3, 4.
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Now θ1, θ2 = σ(θ1) and θ3 = σ2(θ1) are not multiplicatively independent. The regu-

lator

R =
1

4

∏
χ 6=1

(
3∑
i=0

χ(σi) log |σi(θ)|

)
vanishes because the term corresponding to χ(σ) = eπi is zero.

It is known that θ1, θ2 and εt are independent units where εt is the fundamental units

of Q(
√
t2 + 16) (See p.10 in [41]). When t is even, we can find εt.

Proposition 2.7 (Lazarus). When t is even, εt is given by

εt =


t/2+
√

(t/2)2+4

2
, t ≡ 2 mod 4

1+
√

5
2
, t = 8

(t/4) +
√

(t/4)2 + 1, otherwise.

Hence by Proposition 2.7 and the value of θ1 and θ2, for even t the regulator RKt is

RKt = O(log3 t) for even t. (2.8)

Also we can determine the discriminant dKt with 2-adic valuation ν2(t) of t and it is at

least (t2+16)3

64
. So the simplest quartic fields are distinct and the regulator is O((log dKt)

3)

for even t.

From the root formula for f(x, t), it is clear that f(x, t) gives rise to a C4 regular

extension over Q(t).

2.1.3 Simplest Quintic Fields

Emma Lehmer [42] introduced a family of quintic polynomials f(x, t) for t ∈ Z:

f(x, t) = x5+t2x4−(2t3+6t2+10t+10)x3+(t4+5t3+11t2+15t+5)x2+(t3+4t2+10t+10)x+1.

Here disc(f(x, t)) = (t3 + 5t2 + 10t+ 7)2(t4 + 5t3 + 15t2 + 25t+ 25)4.

It is easy to show that f(x, t) is irreducible for all t ∈ Z when we observe it modulo

2. And it is also known that the zeros of f(x, t) generate a cyclic extension Kt of degree
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5 over Q. Let G = Gal(Kt/Q) be the Galois group and σ be a generator of G given by

σ(θ) =
(t+ 2) + tθ − θ2

1 + (t+ 2)θ

for a root θ of f(x, t). For the detail, we refer to [59]. Also it is obvious that the Galois

groups of f(x, t) over Q(t) and over Q(t) are both C5 generated by σ. Hence f(x, t) gives

rise to a regular C5 extension over Q(t). Also, Smith [67] showed that f(x, t) gives rise

to a C5 regular extension.

Schoof and Washington studied these simplest quintic fields when Pt = t4 + 5t3 +

15t2 + 25t+ 25 is a prime number. When Pt is a prime, then the zeros of f(x, t) form a

fundamental system of units in Kt. Gaál and Pohst extended this result for square-free

Pt (see the proof of Theorem 3.5 in [59]).

In this case, by Theorem 2.5, RKt � (log t)4. It also follows from [59]: Let U denote

the group of units generated by the zeros modulo {±1}. Define iθ = [O∗Kt/{±1} : U ].

Schoof and Washington [59] showed that iθ ≤ 11 if |t+ 1| ≥ 20 and

R = |det(log |σi+j(θ)|)1≤i,j≤4| ≤
(

71 +
36

log |t+ 1|

)
log4 |t+ 1|.

Jeannin [33] found the prime factorization of Pt.

Theorem 2.9 (Jeannin). The number Pt is written in a unique way: Pt = 5cq5
∏n

i=1 p
xi
i , c ∈

{0, 2}, q ∈ N, pi distinct primes,xi ∈ [1, 4]. So the conductor of Kt is ft = 5c
∏n

i=1 pi.

Especially if Pt is cubic-free, then Pt = 5c
∏n

i=1 p
xi
i and x1 = 1 or 2 and

t4 � Pt ≤ 5c(
n∏
i=1

pi)
2 ≤ (DKt)

2.

Hence for cubic-free Pt, when we combine all these arguments, we have

RKt � log4(DKt) (2.10)
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2.1.4 Simplest Sextic Fields

It was Gras [22] who introduced the simplest sextic polynomial f(x, t) first, given by

f(x, t) = x6 − t− 6

2
x5 − 5

t+ 6

4
x4 − 20x3 + 5

t− 6

4
x2 +

t+ 6

2
x+ 1

and discriminant of f(x, t) is 36

214
(t2 + 108)5.

Let Kt = Q(θ), where θ is a root of f(x, t). She showed the following properties:

1. If t ∈ Z− {0,±6,±26}, then f(x, t) is irreducible in Q[X], and Kt is a real cyclic

sextic field; a generator σ of its Galois group is characterized by the relation σ(θ) =

(θ − 1)/(θ + 2). We have K−t = Kt for all t ∈ Z, and we can suppose that

t ∈ N− {0, 6, 26}.

2. The quadratic subfield of Kt is k2 = Q(
√
t2 + 108).

3. The cubic field of Kt is k3 = Q(φ), where

φ = θ−1−σ3

= − 2θ + 1

θ(θ + 2)

and

Irr(φ,Q) = x3 − t− 6

4
x2 − t+ 6

4
x− 1;

the discriminant of this polynomial is ((t2 + 108)/16)2. If t ≡ 2 (mod 4), k3 is the

simplest cubic field.

4. The conductor f of Kt is given by the following procedure: Let m be the product of

primes, difference from 2 and 3, dividing t2 + 108 with an exponent not congruent

to 0 modulo 6; then f = 4k3lm, where

k = 0 if t ≡ 1 mod 2 or t ≡ ±6 mod 16, k = 1 if not.

l = 0 if t ≡ 1 mod 3 l = 1 if t ≡ 0 mod 27 , l = 2 if not .
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As in the case of simplest quartic fields, θ, σ(θ), σ2(θ), σ3(θ) and σ4(θ) do not form

independent units. The regulator

R =
1

6

∏
χ 6=1

(
5∑
i=0

χ(σi) log |σi(θ)|

)

vanishes because the term corresponding to χ(σ) = eπi is zero.

We need to find a set of 5 independent units in Kt to compute an upper bound of the

regulator of Kt. Let E be the group of units in Kt. A unit in Kt is called a relative unit

if its norm is ±1 over k2 and k3. The group of the relative units in Kt is < ±1 > ⊕E∗

where

E∗ = {u ∈ E | u1−σ+σ2

= 1}.

and there is a unit ξ such that every unit u ∈ E∗ may be written

u = ξλ+µσ for some λ, µ ∈ Z.

When t is of some specific form, Gras [22] found a generator ξ of E∗. Define S(X) be

a finite set of positive numbers.

S(X) =
{

0 < r < X | 3r2 + 3r + 1 and 12r2 + 12r + 7 square-free
}
.

For all r ∈ S(X), let t = (6r + 3)(36r2 + 36r + 18) and we consider fields Lr = Kt =

Q(w) where w = θ1−σ3
= − θ(2θ+1)

θ+2
. Then there exits a unit v such that w = v1+σ. Hence

v =
(w+1)−

√
(w+1)2−8w

2
. Then v is a generator ξ of E∗. Gras also shows that if r ∈ S(X),

then the conductor of k2 is f2 = 36r2 + 36r + 21, and the fundamental unit of k2 is

ε2 =
(12r2 + 12r + 5) + (2r + 1)

√
36r2 + 36r + 21

2
.

Since t = (6r+3)(36r2 +36r+18) ≡ 2 mod 4, the field k3 is a simplest cubic field. Hence

for r ∈ S, we have an explicit set of independent units:

{ε2, τ, τσ
2

, v, vσ}
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where τ is a root of x3− t−6
4
x2− t+6

4
x− 1. Hence, for t = (6r+ 3)(36r2 + 36r+ 18) with

r ∈ S(X).

RKt � (log dKt)
5 (2.11)

Now we show that f(x, (6r+ 3)(36r2 + 36r+ 18)) gives rise to a regular C6 extension

over Q(r). If θr is a root of f(x, (6r+ 3)(36r2 + 36r+ 18)), then it is clear Q(r)(θr) is the

splitting field of f(x, (6r + 3)(36r2 + 36r + 18) over Q(r) with Galois group C6 =< σ >.

By the same argument, the Galois group of f(x, (6r + 3)(36r2 + 36r + 18)) over Q(t) is

also C6 =< σ >. Hence the claim follows.

2.2 Dihedral groups

2.2.1 D3 extensions with signature (1, 1)

Consider a cubic polynomial

f(x, t) = x3 + tx− 1

with disc(f(x, t) = −(4t3 + 27). This polynomial was studied by Ishida [31] first.

Theorem 2.12 (Ishida). Let Kt = Q(η) be the cubic field of signature (1,1), where η is

the real root of the cubic equation

x3 + tx− 1 = 0, (t ∈ Z, t ≥ 2).

If 4t3 + 27 is square-free or t = 3m and 4m3 + 1 is square-free, then η is the fundamental

unit of K.

It is easy to show that the real root η is located between −1+ε
t

and −1
t

for any ε > 0.

Hence for t with square-free 4t3 + 27, the regulator RKt is

log t < RKt < (1 + ε) log t.
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Since dKt = −(4t3 + 27),

RKt � log |dKt|. (2.13)

It is obvious that f(x, t) is irreducible over Q(t) and its discriminant is not a square

in Q(t). Hence f(x, t) gives rise to a D3 regular extension.

2.2.2 D4 extensions

Nakamula [51] constructed quartic fields with small regulators whose Galois closures have

D4 as the Galois group. Nakamula uses a polynomial with 3 parameters

f = x4 − sx3 + (t+ 2u)x2 − usx+ 1

where (s, t, u) ∈ N× Z× {±1}, (s, t, u) 6= (1,−1, 1).

The discriminant Df of f is given by

Df = D2
1D2 with D1 = s2 − 4t, D2 = (t+ 4u)2 − 4us2.

For a zero ε of f with |ε| ≥ 1, we define α := ε+ uε−1. Put

K = Q(ε), F = Q(
√
D1), L = Q(

√
D2), M = Q(

√
D1D2)

Then F = Q(α) ⊆ K = F (ε) = F (
√
α2 − 4u).

With signs of D1 and D2 we can determine the signature of K. More precisely,

Lemma 2.14. [51] Assume F 6= Q and L 6= Q. Then K is a non-CM quartic field with

a quadratic subfield F , and |ε| > 1. If F = L, then K is cyclic over Q. If F 6= L, then

K is non-Galois over Q, and the composite MK is dihedral over Q and cyclic over M .

Moreover 
(r1, r2) = (0, 2) if D1 < 0

(r1, r2) = (2, 1) if D2 < 0

(r1, r2) = (4, 0) otherwise.

Moreover, if F 6= L,DF = D1 and DL = D2, then DK = Df .

Note that if K is not totally complex, the quadratic subfield F is real.
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D4 extension with signature (0,2)

We specify that s = u = 1. Then we have, for positive integer t,

f(x, t) = x4 − x3 + (t+ 2)x2 − x+ 1

with D1 = 1 − 4t, D2 = t2 + 8t + 12. If D1, D2 are square-free for odd integer t, DK

equals (1 − 4t)2(t + 2)(t + 6). For a positive integer t, D1 is negative, by Lemma 2.14,

(r1, r2) = (0, 2) and MK/Q is a D4 Galois extension.

Nakamula estimated the regulator RF of the field F .

RK =
1

4
log

DK

16
+ o(1) as DK →∞. (2.15)

To show that f(x, t) gives rise to a regular D4 extension, we briefly recall how to

determine the Galois group of a quartic polynomial over an arbitrary field F in [11], page

358. We write a quartic polynomial f in the form

f = x4 − c1x
3 + c2x

2 − c3x+ c4

and we define the Ferrari resolvent of f to be

θf (y) = y3 − c2y
2 + (c1c3 − 4c4)y − c2

3 − c2
1c4 + 4c2c4.

Theorem 2.16. Let F have characteristic 6= 2, and f ∈ F [x] be monic and irreducible

of degree 4. Then Galois group of f over F is determined as follows:

(a) If θf (y) is irreducible over F , then

G =

 S4, if disc(f) /∈ F 2

A4, if disc(f) ∈ F 2

(b) If θf (y) splits completely over F , then G ' Z/2Z× Z/2Z.

(c) If θf (y) has a unique root β in F , then

G is isomorphic to


D4, if 4β + c2

1 − 4c2 6= 0 and disc(f)(4β + c2
1 − 4c2) /∈ (F ∗)2

or 4β + c2
1 − 4c2 = 0 and disc(f)(β2 − 4c4) /∈ (F ∗)2

C4, otherwise.
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The Ferrari resolvent of f(x, t) is

y3 − (t+ 2)y2 − 3y + 4t+ 6 = (y − 2)(y2 − ty − (2t+ 3)).

Then disc(f(x, t))(4β + c2
1 − 4c2) = (1 − 4t)3(t + 2)(t + 6) /∈ (Q(t)∗)2 and (Q(t)∗)2. By

Theorem 2.16, the Galois group of f(x, t) over both Q(t) and Q(t) is D4. Hence f(x, t)

gives rise to a D4 regular extension over Q(t).

D4 extension with signature (2,1)

We specify that u = 1, t = 1. Then we have f(x, s) = x4 − sx3 + 3x2 − sx + 1 and

D1 = s2 − 4 and D2 = 25 − 4s2 = (5 + 2s)(5 − 2s). Assume that D1 and D2 are

square-free for odd integers s. Then DF = D1, DL = D2 and by Lemma 2.14 we have

DK = Df = (s2 − 4)2(5 + 2s)(5 − 2s). For a positive integer s bigger than 3, D1 is

positive and D2 is negative, by Lemma 2.14, (r1, r2) = (2, 1) and MF/Q is a D4 Galois

extension.

Nakamula showed for the field generated by f(x, t),

QRK
RF

= 1
3

log |DK |
4

+ o(1)

RF = 1
2

logDF + o(1)

as |DK | and DF −→∞. Here Q is 1 or 2 depending on K and F . Hence

RK � (log |DK |)2. (2.17)

The Ferrari resolvent of f(x, s) is

y3 − 3y2 + (s2 − 4)y − 2(s2 − 6) = (y − 2)(y2 − y + (s2 − 6)).

Then disc(f(x, s))(4β + c2
1 − 4c2) = (s2 − 4)3(5 + 2s)(5 − 2s) /∈ (Q(s)∗)2 and (Q(s)∗)2.

Hence f(x, s) gives rise to a D4 regular extension over Q(s).
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D4 extension with signature (4,0)

We specify that u = −1, t = 1 and s > 6. Then we have f(x, s) = x4− sx3− x2 + sx+ 1

and D1 = s2−4 and D2 = 9+4s2. Assume that D1 and D2 are square-free for odd integer

s. Then DF = D1, DL = D2 and by Lemma 2.14 we have DK = Df = (s2− 4)2(9 + 4s2).

For square-free s2 − 4 and 4s2 + 9, K,L are always distinct. Hence, by Lemma 2.14,

(r1, r2) = (4, 0) and MK/Q is a D4 Galois extension.

Nakamula showed for the field generated by f(x, s)

QRK
RF

= 1
18

log DK
4

log DF
210

+ o(1)

RF = 1
2

logDF + o(1)

as DK and DF −→∞. Here Q is 1 or 2 depending on K and F .

Hence

RK � (log |DK |)3. (2.18)

The Ferrari resolvent of f(x, s) is

y3 + y2 − (s2 + 4)y − 2(s2 + 2) = (y + 2)(y2 − y − (s2 + 2)).

Then disc(f(x, s))(4β + c2
1 − 4c2) = (s2 − 4)3(9 + 4s2) /∈ (Q(s)∗)2 and (Q(s)∗)2. Hence

f(x, s) gives rise to a D4 regular extension over Q(s).

2.2.3 D5 extensions

Consider the polynomial in [60] for the case of D5 extension;

f(x, t) = x5 − tx4 + (2t− 1)x3 − (t− 2)x2 − 2x+ 1.

Its discriminant is (4t3 − 28t2 + 24t − 47)2 and the signature is (1, 2) for t ≤ 6 and

(5, 0) for n ≥ 7. We claim that f(x, t) gives rise to a regular D5 extension over Q(t),

i.e., if we consider f(x, t) as a polynomial over Q(t) and E is the splitting field, then

E ∩Q = Q. This is equivalent to the fact that Gal(EQ/Q(t)) ' Gal(E/Q(t)).
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By [34], page 41, the Weber sextic resolvent of f(x, t) is

G(z) = (z3 + b4z
2 + b2z + b0)2 − 210(4t3 − 28t2 + 24t− 47)2z,

where b4 = −4t2−4t+37, b2 = 64t3−312t2 +328t+115, b0 = 64t3−2884t2 +4348t−249.

It factors as

G(z) = (z − 4t2 + 12t− 9)(z5 − (4t2 + 20t− 83)z4 + (128t3 − 368t2 − 816t+ 2346)z3

−(1024t4 − 7040t3 + 16536t2 + 3448t− 29126)z2

+(2048t4 + 51072t3 − 201328t2 + 18640t+ 256933)z

−(1024t4 − 89216t3 + 1948548t2 − 231404t+ 6889)).

Therefore, the Galois group of f(x, t) over Q(t) and Q(t) is either D5 or C5. In order

to distinguish it, we use the criterion in [34], page 42. Namely, the Galois group is C5

if and only if the resolvent R(x1 − x2, f(x, t))(X) factors into irreducible polynomials of

degree 5. Here

R(x1 − x2, f(x, t))(X) = X−5Res(f(Y −X, t), f(Y, t))

= (X10 +X8(−2t2 + 12t− 8) +X6(t4 − 12t3 + 46t2 − 56t− 4)

+X4(−2t4 + 16t3 − 8t2 − 112t+ 127) +X2(t4 − 60t2 + 128t+ 6)− 4t3 + 28t2 − 24t+ 47)

(X10 +X8(−2t2 + 8t− 2) +X6(t4 − 8t3 + 20t2 − 4t+ 7) +X4(−2t4 + 36t2 − 4t+ 41)

+X2(t4 − 4t3 + 66t2 − 36t+ 103)− 4t3 + 28t2 − 24t+ 47)

It is clear that the above factors cannot be factored into irreducible polynomials of

degree 5. Hence the Galois group of f(x, t) over both Q(t) and Q(t) is D5.

Let θt be a root of f(x, t). Schöpp found the fundamental units in the equation order

Z[θt] for t ≤ 6. More precisely, he shows

Theorem 2.19 (Schöpp). The elements θt, θt− 1 form a system of independent units in

the order Z[θt]. Moreover, they are fundamental units in Z[θt] for t ≤ 6.
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However, Schöpp could not show that Z[θt] is the maximal order of Q(θt). Lavallee,

Spearman, Williams and Yang [40] found a parametric family of quintics with a power

integral basis. The parametric polynomial Fb(x) is given by

Fb(x) := x5 − 2x4 + (b+ 2)x3 − (2b+ 1)x2 + bx+ 1, b ∈ Z.

and its discriminant is (4b3 + 28b2 + 24b+ 47)2.

They showed that when 4b3 + 28b2 + 24b + 47 is square-free, then the field Q(θb)

generated by a root θb of Fb(x) has a power integral basis Z[θb]. Since x5F−t
(

1
x

)
= f(x, t),

this implies that θt, θt − 1 are fundamental units of Q(θt) when 4t3 − 28t2 + 24t − 47 is

square-free.

Schöpp found the locations of roots of f(x, t).

Lemma 2.20 (Schöpp). Let θ
(1)
t be the real root and let θ

(2)
t = θ

(3)
t , θ

(4)
t = θ

(5)
t be the pairs

of complex roots of f(x, t). Then we have the following approximations:

(i) −t+ 2 + 2
t
< |θ(1)

t | < −t+ 2 + 1
t

for t < −4

(ii) −t+ 3 + 2
t
< |θ(1)

t − 1| < −t+ 3 + 1
t
for t < −4

(iii) 1
2
√
−t < |θ

(2)
t | < 2√

−t for t < −4

(iv)
√

1− 3
4t
< |θ(2)

t − 1| <
√

1− 6
5t

for t < −144

(v)
√

1 + 3
t
< |θ(4)

t | <
√

1− 1
t2

for t < −174

(v)
√
− 5

6t
< |θ(4)

t − 1| <
√
− 14

13t
for t < −139.

Let Kt be the quintic field by adjoining θ
(1)
t to Q. Since we know the absolute value

of roots, it is easy to show that the regulator RKt of a quintic field Kt.

Lemma 2.21. For t with 4t3 − 28t2 + 24t− 47 square-free,

RKt � (log dKt)
2.
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2.3 Alternating groups

2.3.1 A4 extensions

Let

f(x, t) = x4 − 8tx3 + 18t2x2 + 1.

Its discriminant is 162(1+27t4)2. We claim that the splitting field of f(x, t) over Q(t)

is a regular extension with Galois group A4. We have to show that the Galois groups of

f(x, t) over Q(t) and Q(t) are both A4.

First, we have to show that f(x, t) is irreducible over Q(t). By Gauss Lemma, it is

enough to check the irreducibility of f(x, t) over Q[t]. It is easy to check that f(x, t) has

no root in Q[t]. If f(x, t) is decomposed into a product of two quadratic polynomials, we

have

x4 − 8tx3 + 18t2x2 + 1 = (x2 + bx+ c)(x2 + dx+ 1/c)

for some b, d ∈ Q[t] and c ∈ Q and we can induce a contradiction easily. Hence f(x, t) is

irreducible over Q[t].

Its Ferrari resolvent θ(y) equals y3 − 18t2y2 − 4y + 8t2 and it is irreducible over Q[t].

Since the discriminant of f(x, t) is a square in Q(t) and Q(t), the Galois groups over Q(t)

and Q(t) are both A4.

Let θt be a root of f(x, t), and Kt = Q(θt). Then θt is a unit in ZKt . We prove

that Kt has the smallest possible regulator. We can see easily that f(x, t) has 4 complex

roots.

Proposition 2.22. The regulator RKt satisfies RKt � log t.

Proof. By considering α = 6t in Lemma 2.4, we can see that

2t− 1

54t3
< |θt| < 6t.
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Therefore

Reg(Z[θt]) ≤ log |θt| � log t.

Lemma 2.23. If 27t4 + 1 is cubic-free, then dKt � t2. Hence RKt � log(dKt).

Proof. First note that f(x, t) = (x+ t)(x− 3t)3 + 27t4 + 1. Take t such that 27t4 + 1 is

cubic-free. Let p| (27t4 + 1), p > 3. Then p - t and f(x, t) ≡ (x+ t)(x− 3t)3 mod p. The

vertices of the Newton polygon with respect to x− 3t are (0,0), (1,0), (4, i) with i = 1, 2.

By Cohen [11], page 315, Newton polygon argument shows that

pZKt = p1p
3
2

with prime ideals p1, p2. Hence p|Disc(Kt).

Therefore, dKt ≥
∏

p| (27t4+1),p 6=3

p. But 27t4 + 1 ≤

 ∏
p| (27t4+1)

p

2

. Hence dKt � t2.

Consider a quartic polynomial for positive integers t ∈ Z+,

ft(x) = x4 + 18x2 − 4tx+ t2 + 81.

with disc(ft(x)) = 28t2(t2 +108)2. This polynomial is studied by Spearman [40] first. Let

Kt be the quartic field obtained by adjoining a root θt of ft(x) to the rational numbers.

It is easy to check that the signature of Kt is (0, 2). Spearman showed, under some

square-free condition, that Kt is monogenic. Hence they are distinct. More precisely;

Theorem 2.24 (Spearman). Suppose that t is a positive integer and that t(t2 + 108) is

square-free. Then Kt is a monogenic A4 quartic extensions of Q. Moreover the fields Kt

are distinct.

We claim that the Galois group of ft(x) over Q(t) and Q(t) are both A4. i.e, the

splitting field E of f(x, t) over Q(t) is a regular extension. It is enough to show that the

Galois group of ft(x) over Q(t) is A4. First we have to show that ft(x) is irreducible over
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Q[t]. This can be shown by checking that f(x, t) has no root in Q[t] and it can not be a

product of two quadratic polynomials.

The Ferrari resolvent of ft(x) is

y3 − 18y2 − (4t2 + 324)y + (56t2 + 1296).

Since disc(ft(x)) is a square in Q[t], if the Ferrai resolvent has no root in Q[t], the

Galois group of ft(x) is A4. The only possibilities for a root are of the forms a, b(t±i
√

162
7

)

and c(t2 + 162) for some a, b, c ∈ Q. We can check that they are not a root of the Ferrai

resolvent. Hence we showed that ft(x) gives rise to an A4 regular extension.

2.3.2 A5 extensions

Consider the polynomial f(x, t) = x5 + 5(5t2 − 1)x− 4(5t2 − 1), where 5t2 − 1 is square

free. Here disc(f(x, t)) = 2856t2(5t2 − 1)4.

For a non-zero integer t, f(x, t) has one real root and four complex roots. Let Kt be

the quintic field obtained by adjoining the real root θt of f(x, t).

We claim that the Galois groups of f(x, t) over Q(t) and Q(t) are both A5. First we

have to check that f(x, t) is irreducible over Q(t) and Q(t). This is true because f(x, t)

is an Eisenstein polynomial with respect to 5t2 − 1 (resp.
√

5t+ 1) as a polynomial over

Q(t) (resp. Q(t)). Since the discriminant is a square in Q(t) and Q(t), the Galois group

is a subgroup of A5. It is enough to show that the below sextic resolvent of f(x, t) has

no root in Q(t).

θ(y) = (y3 + b2y
2 + b4y + b6)2 − 210disc(f(x, t))y

where b2 = −100(5t2 − 1),b4 = 6000(5t2 − 1)2 and b6 = 4000(5t2 − 1)3. If θ(y) has a root

α in Q(t) which is a divisor of b2
6, then we have

(α3 + b2α
2 + b4α + b6)2 = 210disc(f(x, t))α (2.25)
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Hence α should be a square. The possible degrees of α are 0, 2, 4, 6. When the degree is

0, then such α can not be a root of θ(y). If the degree is 4 or 6, then the degree of LHS

and the degree of RHS in (2.25) does not match. Hence the only possible forms of α are

a(
√

5t+ 1)2 or a(
√

5t− 1)2

for some algeraic number a ∈ Q. By the help of computer algebra such as PARI, we can

check that they can not be a root of θ(y). Hence, we have

Lemma 2.26. f(x, t) gives rise to an A5 regular extension.

Assume that 5t2 − 1 is square-free. For every odd prime divisor p of 5t2 − 1, f(x, t)

is an Eisenstein polynomial with respect to p and p does not divide the index of θt. This

implies dKt is at least divided by (5t2 − 1)4 or
(

5t2−1
2

)4

.

Lemma 2.27. For square-free 5t2 − 1,

log dKt � log |t|.

2.4 Symmetric groups

2.4.1 S4 extensions

S4 extensions with signature (2, 1)

Let t > 1 be a positive square-free integer and f(x, t) = x2(x−10t)(x−18t)+t. Then the

discriminant Disc(f(x, t)) of f(x, t) is −256t3(12t+ 1)(15t− 1)(144t2− 12t+ 1)(225t2 +

15t + 1) < 0. Since f(x, t) is an Eisenstein polynomial for each prime divisor of t,

Disc(f(x, t)) is divided by t3. (See [51], page 60.)

Consider f(x, t) = x2(x − 10t)(x − 18t) + t over Q(t). It is easy to see that the

cubic resolvent y3 − 180t2y2 − 4ty − 64t3, is irreducible over Q[t]. By Gauss Lemma, it

is irreducible over Q(t). Hence the Galois group of f(x, t) over Q(t) is S4. Therefore,

f(x, t) gives rise to a regular Galois extension over Q(t).
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Note that f ′(x, t) = 4x(x − 6t)(x − 15t), and we can see easily that f(x, t) has two

real roots θ1, θ2 and two complex roots θ3, θ4 = θ3. For sufficiently large t, we can see

that 10t+ 1
t3
< θ1 < 10t+ 1

t2
, 18t− 1

t2
< θ2 < 18t− 1

t3
. Also by taking α = 1

t
and applying

Lemma 2.4, we can see that θ3 and its conjugate θ4 are inside of the circle of radius 1/9

centered at the origin.

Let Kt = Q[θ1]. Then we can find two independent units in ZKt .

Lemma 2.28.
θ41
t

and (θ1−10t)4

t
are independent units in ZKt.

Proof. Since θ4
1−28tθ3

1 +180t2θ3
1 + t = 0,

θ41
t

= 28θ3
1−180tθ2

1−1. Hence
θ41
t

is an algebraic

integer. Also

(θ1 − 10t)2(θ1 − 18t)2

t
=

(θ2
1 − t(28θ1 − 180t))2

t
=
θ4

1

t
−2θ2

1(28θ1−180t)2+t(28θ1−180t)2.

So (θ1−10t)2(θ1−18t)2

t
is an algebraic integer. Now we have

θ4
1

t
· (θ1 − 10t)2(θ1 − 18t)2

t
= 1.

Hence
θ41
t

is a unit. By considering y = x− 10t or y = x− 18t, we can see that (θ1−10t)4

t

and (θ1−18t)4

t
are algebraic integers. We have

θ8
1

t2
· (θ1 − 10t)4

t
· (θ1 − 18t)4

t
= 1.

Hence (θ1−10t)4

t
is a unit.

Assume that
θ41
t

and (θ1−10t)4

t
are dependent. Then(
θ4

1

t

)k
=

(
(θ1 − 10t)4

t

)m
for some integers k and m. Without the loss of generality, we can assume that k is

positive. When we consider the size of θ1, m should be a negative integer. But when we

replace θ1 by θ2, m should be a positive integer and it induces a contradiction.

Lemma 2.29. For positive square-free t, RKt � (log |dKt |)2.
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Proof. By definition,

RKt ≤

∣∣∣∣∣∣∣det
log | θ

4
1

t
| log | θ

4
2

t
|

log | (θ1−10t)4

t
| log | (θ2−10t)4

t
|

∣∣∣∣∣∣∣
By the above estimates on θ1, θ2, it is clear that RKt ≤ (log t)2. Since t3 | dKt , we prove

the claim.

S4 extensions with signature (0, 2)

Let t > 1 be a positive square-free integer and f(x, t) = x4 + tx2 + tx + t. Then the

discriminant Disc(f(x, t)) of f(x, t) is t3(12t2− 11t+ 256). Since f(x, t) is an Eisenstein

polynomial for each prime divisor of t, Disc(f(x, t)) is divided by t3. (See [51], page 60.)

The cubic resolvent y3− ty2− 4ty+ 3t2 of f(x, t) has three real roots. One of them is

located between t+ 1 and t+ 2 hence it is not an integer. So if the cubic resolvent has an

integer root, we can show that the integer root should be divided by t. Since ±t,±3t,±t2

and ±3t2 are not a root of the cubic resolvent, the cubic resolvent is irreducible. Hence

f(x, t) gives rise to an S4 Galois extension for each positive square-free integer t.

Consider f(x, t) = x4 + tx2 + tx+ t over Q(t). It is easy to see that the cubic resolvent

y3− ty2−4ty+ 3t2, is irreducible over Q[t]. By Gauss Lemma, it is irreducible over Q(t).

Hence the Galois group of f(x, t) over Q(t) is S4. Therefore, f(x, t) gives rise to a regular

Galois extension over Q(t).

Note that f ′(x, t) = 4x3 + 2tx+ t has only one real root x0, and we can easily check

that f(x0) > 0. Hence f(x, t) has four complex roots θ1,θ2 = θ1,θ3 and θ4 = θ3. For

sufficiently large t, when we apply Lemma 2.4 with α = i
√
t, we can see that one root

lies inside of the circle of radius 1 centered at 1 + i
√
t. Let θ be the root.

Let Kt = Q[θ]. Then since θ4

t
= −(θ2 + θ + 1), θ4

t
is an algebraic integer. Here

NKt/Q(θ) = t. Hence θ4

t
has norm 1, and it is a unit in ZKt .

Since |θ| �
√
t, log | θ4

t
| � log t. Since t3|dKt , we have
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Lemma 2.30. For positive square-free t, RKt � log dKt.

2.4.2 S5 extensions

Consider a quintic polynomial for positive square-free integers t ∈ Z+ with t ≡ 1 (mod

5),

f(x, t) = x5 + tx+ t

with the discriminant disc(f(x, t)) = t4(256t + 3125). We claim that the Galois groups

of f(x, t) over Q(t) and Q(t) are both S5. Since ft(x) is an Eisenstein polynomial for an

irreducible element t, it is irreducible over Q(t) and Q(t) and it is clear that disc(f(x, t))

is not an square in Q(t) and Q(t). If the sextic resolvent has no root in Q(t) and Q(t),

then the Galois group is S5 over both fields.

The sextic resolvent of f(x, t) is given by

θt(y) = (y3 + b2y
2 + b4y + b6)2 − 210disc(ft(x))y

where b2 = −20t, b4 = 240t2, and b6 = 320t3.

We have to show that θt(y) does not have a root in Q(t). If α, a divisor of b2
6, is a

root of θt(y), then

(α3 + b2α
2 + b4α + b6)2 = 210disc(f(x, t))α.

Even though disc(f(x, t)) and b6 has a common divisor t3, but the other factors are

coprime, it induces a contradiction.

Let Kt be a quintic field obtained by adjoining a root of ft(x) to Q. Then the signature

of Kt is (1, 2). Since ft(x) is an Eisenstein polynomial for a square-free integer t, the

field discriminant dKt of Kt is divided by t4. This polynomial is used to generate extreme

values of logarithmic derivatives of Artin L-functions.

Consider, for a positive square-free integer t with t ≡ 1 (mod 5),

f(x, t) = (x+ t)(x2 + 5t)(x2 + 10t) + t
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with the discriminant disc(f(x, t)) = t4(500000t10+15000000t9+162350000t8+746700000t7+

1234759600t6 + 7714500t5 − 394744t4 + 5143500t3 + 162500t2 + 3125).

We claim that the Galois groups of f(x, t) over Q(t) and Q(t) are both S5. Since

f(x, t) is an Eisenstein polynomial for an irreducible element t, it is irreducible over Q(t)

and Q(t) and it is clear that disc(f(x, t)) is not an square in Q(t) and Q(t). If the sextic

resolvent has no root in Q(t) and Q(t), then the Galois group is S5 over both fields.

The sextic resolvent of f(x, t) is given by

θt(y) = (y3 + b2y
2 + b4y + b6)2 − 210disc(ft(x))y

where b2 = 5t2(24t − 335), b4 = t3(400t3 − 192000t2 + 661811t − 2400), and b6 =

52t3(12400t5 + 3069000t4 + 17775t3 + 168480t2− 64t+ 2400). As in the previous case, we

can show that θt(y) does not have a root in Q(t). Hence f(x, t) gives rise to a S5 regular

extension over Q(t).

Let Kt = Q(θ1) be a quintic field obtained by adjoining the real root θ1 of f(x, t) to the

rational numbers Q. Moreover, ft(x) ≡ x4(x+ 1) + 1 ≡ (x+ 2)(x2 + x+ 1)(x2 + 3x+ 3)

(mod 5) and the signature of Kt is (1, 2). Hence the Galois extensions K̂t/Q satisfy

the hypothesis of Theorem 1.4, and Artin L-functions L(s, ρ, t) =
ζKt (s)

ζ(s)
are cuspidal

automorphic L-functions of GL(4)/Q.

We claim that (θ1+t)5

t
and

(θ21+5t)5

t2
are two independent units in Kt: Since ft(x) =

x5 + tx4 + 15tx3 + 15t2x2 + 50t2x+ 50t3 + t,

θ5
1

t
= −(θ4

1 + 15θ3
1 + 15tθ2

1 + 50tθ1 + 50t2 + 1).

Hence
θ51
t

is an algebraic integer. From this, it is easy to show that (θ1+t)5

t
and

(θ21+5t)5

t2
are

algebraic integers. Now we have

(θ1 + t)5

t
· (θ2

1 + 5t)5

t2
· (θ2

1 + 10t)5

t2
= −1.

Hence (θ1+t)5

t
and

(θ21+5t)5

t2
are units. To show that they are independent, we need to know

the locations of 5 roots of ft(x). For the case of the real root θ1, we have −t− 1
t
< θ1 < −t.
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For complex roots, we apply Lemma 2.4 to ft(x) with α = i
√

5t then we can see that

another root θ2 of ft(x) converges to i
√

5t as t increases. More precisely,

∣∣∣θ2 − i
√

5t
∣∣∣ = O

(
1

t1.5

)
.

Put θ3 = θ2. Apply Lemma 2.4 again to ft(x) with α = i
√

10t. Then we can find the

fourth root θ4 with ∣∣∣θ4 − i
√

10t
∣∣∣ = O

(
1

t1.5

)
and put θ5 = θ4.

Assume that (θ1+t)5

t
and

(θ21+5t)5

t2
are dependent. Then

(
(θ1+t)5

t

)k
=
(

(θ21+5t)5

t2

)l
for

some integers k, l. Then it holds when we replace θ1 by θ4, and when we consider the

size of θ1, θ4, we obtain contradiction. By definition,

RKt �

∣∣∣∣∣∣∣
log
∣∣∣ (θ1+t)5

t

∣∣∣ log
∣∣∣ (θ4+t)5

t

∣∣∣
log
∣∣∣ (θ21+5t)5

t2

∣∣∣ log
∣∣∣ (θ24+5t)5

t2

∣∣∣
∣∣∣∣∣∣∣ .

By the above estimates on θ1, θ4, it is clear that RKt � (log t)2. Since ft(x) is an

Eisenstein polynomial, dKt is divisible by t4 if t is square-free. Hence log dKt � log t. We

have proved

Lemma 2.31. For a square-free positive integer t,

RKt � (log dKt)
2.

2.4.3 Sn extensions with signature (n, 0)

Duke [16] considered a polynomial of the form

f(x, t) = (x− t)(x− 22t)(x− 32t) · · · (x− n2t)− t.

Let Kt is a number field obtained by adjoining a root θt of f(x, t). He showed that

the regulator of Kt is minimal up to a constant.
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Proposition 2.32 (Duke). Let t ∈ Z+ be a square-free integer. Then f(x, t) is irre-

ducible. If t is sufficiently large, then K is totally real of degree n and the regulator RKt

of Kt satisfies RKt �f (log dKt)
n−1.

Moreover, he showed

Proposition 2.33 (Duke). For n ≥ 1, the splitting field of f(x, t) over Q(t) is a regular

Sn extension.



Chapter 3

Number fields with extreme class

numbers

This Chapter is based on Cho [6], Cho and Kim [7] and Cho and Kim [8]. Except two

sections 3.3.2 and 3.3.5, they are the joints works with H. Kim. We follow closely [6],[7]

and [8].

3.1 Upper bound of class numbers

Let K(n,G, r1, r2) is the set of number fields of degree n with signature (r1, r2) whose

normal closures have G as their Galois group. Then by the class number formula, the

class number hK for K ∈ K(n,G, r1, r2) is given by

hK =
wK |dK |

1
2

2r1(2π)r2RK

L(1, ρ),

where wK is the number of roots of unity in K, dK is the discriminant of K and RK is

its regulator and L(s, ρ) =
ζK(s)

ζ(s)
is the Artin L-function.

Silverman [66] obtained a lower bound of regulator RK of number fields K:

RK > cn(log γn|dK |)r−r0 , (3.1)

34
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where cn, γn are positive constant depending on degree n of K and r = r1 + r2 − 1 and

r0 is the maximum of unit ranks of subfields of K.

It is easy to prove that under the Generalized Riemann Hypothesis (GRH) for L(s, ρ),

L(1, ρ)� (log log |dK |)n−1. Hence we obtain the upper bound for the class numbers:

hK � |dK |
1
2

(log log |dK |)n−1

(log |dK |)r−r0
.

Now the question is whether the upper bound is sharp. Namely, are there number fields

with the largest possible class number of the size

|dK |
1
2

(log log |dK |)n−1

(log |dK |)r−r0
?

For real quadratic fields, this is a classical result of Montgomery and Weinberger [47].

Ankeny, Brauer, and Chowla [1] constructed unconditionally, for any n, r1, r2, number

fields with arbitrarily large discriminants and hK � |dK |
1
2
−ε. Under the GRH and Artin

conjecture for L(s, ρ), Duke [16] constructed totally real fields of degree n whose Galois

closure has the Galois group Sn with the largest possible class numbers. Daileda [18]

showed Duke’s result unconditionally when n = 3.

We show that the upper bound is sharp up to a constant for many families K(n,G, r1, r2)

of number fields.

3.2 Extreme class numbers

In this section we explain how to generate number fields with extreme class numbers in

a very general setting. Consider an irreducible polynomial f(x, t) with parameter t,

f(x, t) = xn + an−1(t)xn−1 + an−2(t)xn−2 + · · ·+ a1(t)x+ a0(t) ∈ Z[t][x].

Assume that the splitting field E of f(x, t) over Q(t) is regular with Galois group G

for some finite group G. For a specialization t ∈ Z, let Kt be a number field of degree n
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obtained by adjoining a root θt of f(x, t) and K̂t be the Galois closure of Kt. Then by

Cohen’s theorem, Gal(K̂t/Q) = G in most cases.

Assume that the regulator RKt is minimal up to constant. i.e, RKt � (log |dKt |)r−r0 .

We will show that this is true for the cases we consider. However, we could not find

number fields with minimal regulators in the cases of K(4, D4, 2, 1) and K(4, D4, 4, 0) due

to the presense of subfields.

Since f(x, t) gives rise to a G regular extension, by Theorem 2.1, there is a constant

cf depending on f such that for every p ≥ cf , there is a residue class sp modulo p so that

the Frobenius element Frob(p) at p in Gal(K̂t/Q) is trivial for all t ≡ sp (mod p).

For given X > 0, define M =
∏

cf≤p≤y p for y = logX
log logX

. Let sM be the residue class

modulo M for which sM ≡ sp mod p for cf ≤ p ≤ y. We assume the modularity of the

n− 1 dimensional Galois reprensentation ρ for which L(s, ρ, t) =
ζKt (s)

ζ(s)
.

Then we define a set

L(X) = {X
2
< t < X | t ≡ sM mod M}

Each t ∈ L(X) gives rise to an cuspidal automorphic L-functions L(s, ρ, t) ofGL(n−1)/Q.

There is an important question which we may fail to notice. It is possible that two

different t1 and t2 correspond to the same L-function. This is equivalent to the fact that

ζKt1 (s) = ζKt2 (s). When ζKt1 (s) = ζKt2 (s), we say that Kt1 and Kt2 are arithmetically

equivalent. For number fields of small degree, they should be conjugate. More precisely;

Theorem 3.2 (Klingen [38]). Let K|k be an extension of number fields of degree n ≤ 11

and assume there exists some non-conjugate field K ′ being arithmetically equivalent to K

over k. Then up to conjugacy only the following four cases are possible for G = G(K̃|k) :

n = 7 : G = GL3(2)

n = 8 : G = Z/8Z o (Z/8Z)×, G = GL2(3)

n = 11 : G = PSL2(11).
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On the other hand, since the conductor of L(s, ρ, t) is |dKt |, different discriminant dKt

distinguishes the L-functions L(s, ρ, t). To determine the discriminant or its factor, we

impose some extra conditions on t which depends on f(x, t). Assume that the discrim-

inant of f(x, t) is a polynomial in t of degree D. Then there is a constant C such that

|dKt | ≤ CtD. For A = C1/DX, we define a set L(A) of positive integers

L(A) = {X
2
< t < X | t ≡ sM mod M, some condition on t}.

In the cases in consideration, we will show that |L(A)| � X1−ε for any ε > 0.

Let c0 = 5(n−1)D
2

+ 1. Or we may replace (n − 1) in c0 by a smaller constant if ρ is

not irreducible. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L(A) with

e = D, d = 1 and T = (logAD)2, every automorphic L-function excluding exceptional

O(A98/100) L-functions has a zero-free region [α, 1] × [−(log |dKt |)2, (log |dKt |)2]. Let us

denote by L̂(A), the set of the automorphic L-functions with the zero-free region.

Applying Proposition 1.6 to this L-function L(s, ρ, t) in L̂(A), we have

logL(1, ρ, t) =
∑

p≤
√

log |dKt |

λ(p, t)

p
+On,α(1) (3.3)

= (n− 1)
∑

cf≤p≤
√

log |dKt |

1

p
+On,α(1) = (n− 1) log log log |dKt|+On,α(1).

where we use the fact that
√

log |dKt | < y = logX
log logX

for large X.

By the class number formula and the size of regulator RKt , we have the required

result

hKt � |dKt |
1/2 (log log |dKt |)n−1

(log |dKt|)r−r0
.

3.3 Symmetric Groups

3.3.1 S5 Quintic Extensions with signature (1, 2)

In section 2.4.2, we showed that

f(x, t) = (x+ 5)(x2 + 5t)(x2 + 10t) + t
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gives rise to an S5 regular extension. Since disc(f(x, t)) is a polynomial of degree 14,

there is a constant C with disc(f(x, t)) ≤ Ct14. For given X > 0, let A = C1/14X. We

define a set L(A) of square-free integers

L(A) = {X
2
< t < X | t : square-free t ≡ 1 mod 5, t ≡ sM mod M,Gal(K̂t/Q) = S5}

where sM and M are defined as in section 3.2. Then we have

|L(A)| = 6

π2

25

24

∏
p|M

(
1− 1

p2

)−1
X

2M
+O(X1/2 logX).

Every t in L(A) corresponds an Artin L-function L(s, ρ, t) =
ζKt (s)

ζ(s)
which is actually

an cuspidal automorphic L-function of GL(4)/Q since ρ is modular by Theorem 1.4.

We claim that every L(s, ρ, t) for t ∈ L(A) is distinct. It follows from the fact that

Kt are not conjugate each other.

Lemma 3.4. For a square-free t with t ≡ 1 mod 5,

p totally ramifies in Kt if and only if p divides t.

Proof. Since f(x, t) is an Eisenstein polynomial, if p | t, p ramifies totally. See Corollary

6.2.4 in [11]. If p = 5, then f(x, t) ≡ (x + 1)5 mod 5. However, by Newton polygon

method, 5OKt = p4
1p2.

Now assume that p ramifies totally and does not divide 5 and t. Then

f(x, t) ≡ (x+ a)5 mod p.

By comparing coefficients of f(x, t) and (x + a)5 mod p, we can induce a contradiction

and we finish the proof.

Let c0 = 141. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L(A) with

e = 14, d = 1 and T = (logA14)2, every automorphic L-function excluding exceptional
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O(A98/100) L-functions has a zero-free region [α, 1] × [−(log |dKt |)2, (log |dKt |)2]. Let us

denote by L̂(A), the set of the automorphic L-functions with the zero-free region.

Applying Proposition 1.7 to this L-function L(s, ρ, t) in L̂(A), we have

logL(1, ρ, t) =
∑

p≤
√

log |dKt |

λ(p, t)

p
+On,α(1) (3.5)

= 4
∑

cf≤p≤
√

log |dKt |

1

p
+On,α(1) = 4 log log log |dKt|+On,α(1).

By the class number formula and Lemma 2.31,

hKt � dKt
1/2 (log log dKt)

4

(log dKt)
2
.

We summarize as follows:

Theorem 3.6. There is a constant c > 0 such that there exist K ∈ K(5, S5, 1, 2) with

arbitrary large discriminant dK for which

hK > cd
1/2
K

(log log dK)4

(log dK)2
.

3.3.2 S4 Quartic Extensions with signature (4, 0)

In section 2.4.3, we stated the fact that

f(x, t) = (x− t)(x− 22t)(x− 32t)(x− 42t)− t

gives rise to an S4 regular extension. Since disc(f(x, t)) is a polynomial of degree 12,

there is a constant C with disc(f(x, t)) ≤ Ct12. For given X > 0, let A = C1/12X. We

define a set L(A) of square-free integers

L(A) = {X
2
< t < X | t : square-free , t ≡ sM mod M,Gal(K̂t/Q) = S4}

where sM and M are defined as in section 3.2. Then we have

|L(A)| = 6

π2

∏
p|M

(
1− 1

p2

)−1
X

2M
+O(X1/2 logX).



Chapter 3. Number fields with extreme class numbers 40

Every t in L(A) corresponds an Artin L-function L(s, ρ, t) =
ζKt (s)

ζ(s)
which is actually

an cuspidal automorphic L-function of GL(3)/Q since ρ is modular by Proposition 1.1.

We claim that every L(s, ρ, t) for t ∈ L(A) is distinct. It follows from the fact that

Kt are not conjugate each other.

Lemma 3.7. For a square-free t,

p totally ramifies in Kt if and only if p divides t.

Proof. Since f(x, t) is an Eisenstein polynomial, if p | t, p ramifies totally. See Corollary

6.2.4 in [11]. Now assume that p ramifies totally and does not divide t. If t is even, then p

is not equal to 2. If t is odd, then p can be even. However, if p = 2, then ft(x) ≡ (x+a)4

( mod 2 ) and we have 6a2 ≡ 273t3 mod 2 hence it induces a contradiction. So we can

assume that p 6= 2. Also we can see easily that a 6≡ 0 mod p for totally ramified p.

If p = 3, we have a ≡ 0 mod p, hence 3 should be excluded. Since p 6= 2, 3, we have

the following system of equations mod p.

a ≡ −15

2
t, a2 ≡ 91

2
t2, a3 ≡ −205t3 mod p

and we can check that this system is inconsistent and we finish the proof.

Let c0 = 91. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L(A) with

e = 12, d = 1 and T = (logA12)2, every automorphic L-function excluding exceptional

O(A98/100) L-functions has a zero-free region [α, 1] × [−(log dKt)
2, (log dKt)

2]. Let us

denote by L̂(A), the set of the automorphic L-functions with the zero-free region.

Applying Proposition 1.7 to this L-function L(s, ρ, t) in L̂(A), we have

logL(1, ρ, t) =
∑

p≤
√

log dKt

λ(p, t)

p
+On,α(1) (3.8)

= 3
∑

cf≤p≤
√

log dKt

1

p
+On,α(1) = 3 log log log dKt +On,α(1).
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By the class number formula and Lemma 2.32,

hKt � dKt
1/2

(
log log dKt

log dKt

)3

.

We summarize as follows:

Theorem 3.9. There is a constant c > 0 such that there exist K ∈ K(4, S4, 4, 0) with

arbitrary large discriminant dK for which

hK > cdK
1/2

(
log log dK

log dK

)3

.

3.3.3 S4 Quartic Extensions with signature (2, 1)

In section 2.4.1, we showed that

f(x, t) = x2(x− 10t)(x− 18t) + t

gives rise to an S4 regular extension. Since disc(f(x, t)) is a polynomial of degree 9, there

is a constant C with |disc(f(x, t))| ≤ Ct9. For given X > 0, let A = C1/14X. We define

a set L(A) of square-free integers

L(A) = {X
2
< t < X | t : square-free t ≡ 1 mod 2, t ≡ sM mod M,Gal(K̂t/Q) = S4}

where sM and M are defined as in section 3.2. Then we have

|L(A)| = 6

π2

4

3

∏
p|M

(
1− 1

p2

)−1
X

2M
+O(X1/2 logX).

Every t in L(A) corresponds an Artin L-function L(s, ρ, t) =
ζKt (s)

ζ(s)
which is actually

an cuspidal automorphic L-function of GL(3)/Q since ρ is modular by Proposition 1.1.

We claim that every L(s, ρ, t) for t ∈ L(A) is distinct. It follows from the fact that

Kt are not conjugate to each other.

Lemma 3.10. For a square-free t,

p totally ramifies in Kt if and only if p divides t or p = 2.
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Proof. Since f(x, t) is an Eisenstein polynomial, if p | t, p ramifies totally. See Corollary

6.2.4 in [11]. When p = 2, we can not determine the prime decomposition of 2 in Kt.

Now assume that p ramifies totally and does not divide 2 and t.

Then

f(x, t) ≡ (x+ a)4 mod p.

By comparing coefficients of f(x, t) and (x + a)4 mod p, we can induce a contradiction

and we finish the proof.

Let c0 = 68. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L(A) with

e = 9, d = 1 and T = (logA9)2, every automorphic L-function excluding exceptional

O(A98/100) L-functions has a zero-free region [α, 1] × [−(log |dKt |)2, (log |dKt |)2]. Let us

denote by L̂(A), the set of the automorphic L-functions with the zero-free region.

Applying Proposition 1.7 to this L-function L(s, ρ, t) in L̂(A), we have

logL(1, ρ, t) =
∑

p≤
√

log |dKt |

λ(p, t)

p
+On,α(1) (3.11)

= 3
∑

cf≤p≤
√

log |dKt |

1

p
+On,α(1) = 3 log log log |dKt|+On,α(1).

By the class number formula and Lemma 2.29,

hKt � |dKt |
1/2 (log log |dKt|)3

(log |dKt |)2
.

We summarize as follows:

Theorem 3.12. There is a constant c > 0 such that there exist K ∈ K(4, S4, 2, 1) with

arbitrary large discriminant dK for which

hK > c|dK |1/2
(log log |dK |)3

(log |dK |)2
.
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3.3.4 S4 Quartic Extensions with signature (0, 2)

In section 2.4.1, we showed that

f(x, t) = x4 + tx2 + tx+ t

gives rise to an S4 regular extension. Since disc(f(x, t)) is a polynomial of degree 5, there

is a constant C with disc(f(x, t)) ≤ Ct5. For given X > 0, let A = C1/5X. We define a

set L(A) of square-free integers

L(A) = {X
2
< t < X | t : square-free , t ≡ sM mod M,Gal(K̂t/Q) = S4}

where sM and M are defined as in section 3.2. Then we have

|L(A)| = 6

π2

∏
p|M

(
1− 1

p2

)−1
X

M
+O(X1/2 logX).

Every t in L(A) corresponds an Artin L-function L(s, ρ, t) =
ζKt (s)

ζ(s)
which is actually

an cuspidal automorphic L-function of GL(3)/Q since ρ is modular by Proposition 1.1.

We claim that every L(s, ρ, t) for t ∈ L(A) is distinct. It follows from the fact that

Kt are not conjugate to each other.

Lemma 3.13. For a square-free t,

p totally ramifies in Kt if and only if p divides t.

Proof. Since f(x, t) is an Eisenstein polynomial, if p | t, p ramifies totally. See Corollary

6.2.4 in [11].

Now assume that p ramifies totally and does not divide t.

Then

f(x, t) ≡ (x+ a)4 mod p.

By comparing coefficients of f(x, t) and (x+a)4 mod p, we can see that the only possibility

is p = 3 and t ≡ 1 mod 3. However, x4 + x2 + 1 is irreducible mod 3, this case is also

excluded and we finish the proof.
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Let c0 = 39. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L(A) with

e = 5, d = 1 and T = (logA5)2, every automorphic L-function excluding exceptional

O(A98/100) L-functions has a zero-free region [α, 1] × [−(log |dKt |)2, (log |dKt |)2]. Let us

denote by L̂(A), the set of the automorphic L-functions with the zero-free region.

Applying Proposition 1.7 to this L-function L(s, ρ, t) in L̂(A), we have

logL(1, ρ, t) =
∑

p≤
√

log dKt

λ(p, t)

p
+On,α(1) (3.14)

= 3
∑

cf≤p≤
√

log dKt

1

p
+On,α(1) = 3 log log log dKt +On,α(1).

By the class number formula and Lemma 2.30,

hKt � dKt
1/2 (log log dKt)

3

(log dKt)
.

We summarize as follows:

Theorem 3.15. There is a constant c > 0 such that there exist K ∈ K(4, S4, 0, 2) with

arbitrary large discriminant dK for which

hK > cd
1/2
K

(log log dK)3

(log dK)
.

3.3.5 Sn number fields of degree n with (n, 0)

In section 2.4.3, we stated the fact that

ft(x) = (x− t)(x− 22t)(x− 32t) · · · (x− n2t)− t

gives rise to an Sn regular extension. Since disc(ft(x)) = tn−1g(t) is a polynomial of

degree n2 − n, there is a constant C with disc(ft(x)) ≤ Ctn
2−n. For given X > 0, let

A = C
1

n2−nX.

We define a set L(A) of square-free integers

L(A) = {X
2
< t < X | t : square-free, ν(t) ≤ 2, t ≡ sM mod M,Gal(K̂t/Q) = Sn}
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where ν(t) is the number of distinct prime divisors of t.

Here the reason why we impose the extra condition ν(t) ≤ 2 in L(A) is to distinguish

L(s, ρ, t) for t ∈ L(A). It would be possible to prove p ramifies totally in Kt if and only if p |

t.. However, we don’t know how to prove it. We explain below how to distinguish L(s, ρ, t)

with the condition ν(t) ≤ 2 in detail.

The following Proposition makes us able to estimate |L(A)|.

Proposition 3.16. Let x be sufficiently large positive integer and l be a positive integer

of the size of xu for some real number 0 < u ≤ 0.3. For any integer b with (b, l) = 1,

| {0 < n < x | n : square-free n ≡ b mod l, ν(n) ≤ 2} |� x

log xφ(l)

where φ is the Euler phi-function.

The proof of Proposition 3.16 can be found in the appendix.

By Theorem 2.2, we have

| {X
2
< t < X | Gal(K̂t/Q) ∼= S4} |=

X

2
+O(X1/2 logX).

By Proposition 3.16, we have

| {X
2
< t < X | t : square-free, ν(t) ≤ 2, t ≡ tM mod M} |� X1−ε.

hence we have that | L(A) |� X1−ε.

We must assume that the n− 1 dimensional representation ρ is modular because we

don’t have the modularity theorem for Sn with n ≥ 5 except some special cases in S5.

Now there is possibility that different square-free integers in L(A) may correspond

to an same automorphic L-function. Since the conductor of L(s, ρ, t) is the discriminant

of a number field Kt, distinct discriminants distinguish L-functions in L(A). Recall

that disc(ft(s)) = tn−1g(t). Assume that Kt1 and Kt2 have the same discriminant for

t1, t2 ∈ L(A). If they are co-prime, g(t1) is divided by t2
3. If they have a common prime

divisor, then g(t1) is divided by
(

t2
(t1,t2)

)3

. The number of all possible repetition of the
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same L-function in L(A) is at most� ν(g(t1))2. This means that Kt has at most ν(g(t))2

number fields which have the same discriminant. It is well-known that ν(n) < log n. (See

p. 167 in [56]) Hence ν(g(t))2 = O(log2X) for all t in L(A). Hence L(A) has at least

� X1−ε distinct L-functions. Let L̃(A) be the set of distinct L-functions coming from

L(A).

Let c0 = 5(n−1)(n2−n)
2

+ 1. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem

1.10 to L̃(A) with e = n2 − n, d = 1 and T = (logAn
2−n)2, every automorphic L-

function excluding exceptional O(A98/100) L-functions has a zero-free region [α, 1] ×

[−(log dKt)
2, (log dKt)

2]. Let us denote by L̂(A), the set of the automorphic L-functions

with the zero-free region.

Applying Proposition 1.7 to this L-function L(s, ρ, t) in L̂(A), we have

logL(1, ρ, t) =
∑

p≤
√

log dKt

λ(p, t)

p
+On,α(1) (3.17)

= (n− 1)
∑

cf≤p≤
√

log dKt

1

p
+On,α(1) = (n− 1) log log log dKt +On,α(1).

By the class number formula and Lemma 2.32,

hKt � dKt
1/2

(
log log dKt

log dKt

)n−1

.

We summarize as follows:

Theorem 3.18. Assume the Strong Artin conjecture for Sn, n ≥ 5 is true. Fix n.

There is a constant c > 0 such that there exist K ∈ K(n, Sn, n, 0) with arbitrary large

discriminant dK for which

hK > cdK
1/2

(
log log dK

log dK

)n−1

.
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3.4 Alternating Groups

3.4.1 A4 quartic extension with (0, 2)

In section 2.3.1, we showed that

f(x, t) = x4 − 8tx3 + 18t2x2 + 1

gives rise to an A4 regular extension. Since disc(f(x, t)) is a polynomial of degree 8,

there is a constant C with disc(f(x, t)) ≤ Ct8. For given X > 0, let A = C1/8X. We

define a set L(A) of cubic-free integers:

L(A) = {0 < t < X : 27t4 + 1 cubic-free and t ≡ sM mod M}.

We prove the following lemma, which is a direct consequence of [28], page 69.

Lemma 3.19. Let f(x) be an irreducible polynomial of degree d ≥ 3 in Z[x]. Let M be

a positive integer and gcd(a,M) = 1. Suppose that if p|M , then f(a) 6≡ 0 (mod p). Let

N(X, f,M) be the number of integers 1 ≤ n < X and n ≡ a (mod M), with the property

that f(n) is (d− 1)-free. Then

N(X, f,M) = C(M)X
M

+O
(
X
M

(log X
M

)
2
d+1
−1
)
,

where C(M) =
∏

p-M(1− ρ(pd−1)
pd−1 ), and ρ(pk) is the number of solutions for f(x) ≡ 0 (mod

pk).

Proof. Let n = Mm + a, and g(m) = f(Mm + a). Then 1 ≤ m < X
M

, and g(x) is

an irreducible polynomial of degree d. Hooley [28], page 69 showed that the number of

1 ≤ m < X
M

with the property that g(m) is (d− 1)-free, is

C(M)X
M

+O
(
X
M

(log X
M

)
2
d+1
−1
)
,

where C(M) =
∏

p(1 −
ρ′(pd−1)
pd−1 ), and ρ′(pd−1) is the number of solutions for g(m) ≡ 0

(mod pd−1). If p|M , g(m) ≡ f(a) 6≡ 0 (mod p). Hence ρ′(pd−1) = 0. If p - M , then since
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Mm+ a ≡ 0 (mod pd−1) has a unique solution mod pd−1, ρ′(pd−1) = ρ(pd−1). Our result

follows.

Note that by the definition of M, tM , if p|M , then c ≤ p ≤ y, tM ≡ tp (mod p), and

p splits completely in K̂tp . Then 27(Mm + tM)4 + 1 ≡ 27t4p + 1 6≡ 0 (mod p). Hence

ρ(p) = 0. This implies ρ(p3) = 0. If p -M , by Nagell [49], page 87, ρ(p3) = ρ(p) ≤ 4. So∏
p-M

(1− ρ(p3)

p3
)�

∏
p-M

(1− 4p−3) ≥
∏
p-M

(1− p−3)5 ≥ ζ(3)−5.

Hence by the above lemma, |L(A)| = C(M)X
M

+ O

(
X

M(log X
M

)
3
5

)
, and |L(A)| � X

M
. In

the remark below, we use the recent result of Heath-Brown [27] to obtain a better error

term in |L(A)|.

Here different t1, t2 ∈ L(A) may give rise to a same L-function. We claim that at

most 32 different t’s correspond to the same L-function. We owe Ankeny, Brauer and

Chowla [1] for this idea.

First, we need to know the locations of the roots more precisely. By applying Lemma

2.4 with α = 4t + 1.4ti, for sufficiently large t, we find a complex root inside of the

circle of radius 0.03
√

2t centered at 4.015t+ 1.385ti. Again by applying Lemma 2.4 with

α = 0.23i
t

,for sufficiently large t, we find a complex root inside of the circle of radius 0.0115
t

centered at 0.2415i
t

. Here we use PARI to choose a suitable α.

We need to order the roots of f(x, t) in the following way. Let θ1
t be the root near

the origin whose imaginary part is positive and θ2
t = θ1

t . Let θ3
t be the other root whose

imaginary part is positive and θ4
t = θ3

t . Let ρ be the complex embedding of Kt which

maps θ1
t to θ3

t .

If t1, t2 ∈ L(A) correspond to the same L-function, Q(θ1
t1

) and Q(θ1
t2

) are isomorphic,

since they are quartic fields ([38], page 93). Hence Q(θ1
t1

) = Q(θjt2) for some 1 ≤ j ≤ 4.

Assume that 33 different t1, t2, · · · , t33 give rise to the same L-function. Then we can see

that there are at least nine ti1 , ti2 , · · · , ti9 with Q(θkti1 ) = Q(θkti2 ) = · · · = Q(θkti9 ) for some

1 ≤ k ≤ 4. Without the loss of the generality, we assume k = 1. Then there are at
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least two til , tim such that ρ : θ1
til
→ θ3

til
; ρ : θ1

tim
→ θ3

tim
. Now we further assume that

0.55X < t < X. Then

N(θ1
til
− θ1

tim
) <

(
0.253

0.55X

)2

× (4.2896X − 4.204× 0.55X)2 ≈ 0.82737943 < 1.

Since θ1
til
−θ1

tim
6= 0, it induces a contraction. So there are at most 32 t’s corresponding

to the same L-function.

Let L̃(A) be the set of distinct L-functions coming from L(A). Then, we have

A1−ε �| L(A) |� A.

Let c0 = 61. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L̃(A) with

e = 8, d = 1 and T = (logA8)2, every automorphic L-function excluding exceptional

O(A98/100) L-functions has a zero-free region [α, 1] × [−(log dKt)
2, (log dKt)

2]. Let us

denote by L̂(A), the set of the automorphic L-functions with the zero-free region.

Applying Proposition 1.7 to this L-function L(s, ρ, t) in L̂(A), we have

logL(1, ρ, t) =
∑

p≤
√

log |dKt |

λ(p, t)

p
+On,α(1) (3.20)

= 3
∑

cf≤p≤
√

log |dKt |

1

p
+On,α(1) = 3 log log log |dKt|+On,α(1).

By the class number formula and Lemma 2.23,

hKt � dKt
1/2 (log log dKt)

3

(log dKt)
.

We summarize as follows:

Theorem 3.21. There is a constant c > 0 such that there exist K ∈ K(4, A4, 0, 2) with

arbitrary large discriminant dK for which

hK > cd
1/2
K

(log log dK)3

(log dK)
.
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Remark 3.22. Let M ∼ Xδ′ with 0 < δ′ < δ, where δ is the constant in [27]. Then we

have

|L(A)| =
∏
p-M

(
1− ρ(p3)

p3

)
X

M
+O

(
X1−δ) .

where ρ(p3) is the number of solutions to 27t4 + 1 ≡ 0 (mod p3).

Proof. We have

|L(A)| = N(X, tM ,M) =
∑

b, (b,M)=1

µ(b)N(b;X, tM ,M)

with N(b;X, tM ,M) = #{0 < t < X : b3 | 27t4 + 1 and t ≡ tM mod M}. Note that if

p|M , by the definition of tM , 27t4 + 1 ≡ 27t4M + 1 6≡ 0 (mod p).

Denote the solutions to 27t4 + 1 ≡ 0 (mod b3) by n1, n2, · · · , nr. Then

N(b;X, tM ,M) =
∑
i≤r

#{0 < t < X : t ≡ ni mod b3 and t ≡ tM mod M}

=
∑
i≤r

(
X

b3M
+O(1)) =

X

b3M
ρ(b3) +O(ρ(b3)).

It is easy to show

∑
b≤X1/2

(b,M)=1

µ(b)ρ(b3)

b3
=
∏
p-M

(
1− ρ(p3)

p3

)
+O(X−1+ε)

and ∑
b≤X1/2

ρ(b3) = O(X1/2+ε).

Hence ∑
b≤X1/2

(b,M)=1

µ(b)N(b;X, tM ,M) =
∏
p-M

(
1− ρ(p3)

p3

)
X

M
+O(X1/2+ε).

Note that 27t4 + 1 = (27)−3((27t)4 + 273). Hence by [27], we obtain∑
b≥X1/2 µ(b)N(b;X, tM ,M) = O

(
X1−δ), where δ is the constant in [27]. This proves

our assertion.
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3.5 Dihedral Groups

3.5.1 Representations of Dihedral Groups

Let’s review irreducible representations of Dn: If n is odd, Dn =< a, x : an = x2 =

e, xax = a−1 >. Let H = {1, x}. Then irreducible representations of Dn are: 2 one-

dimensional representations 1, χ, and n−1
2

two-dimensional representations ρ1, ..., ρn−1
2

,

where χ is the character of H. We have IndGH 1 = 1 + ρ1 + · · ·+ ρn−1
2

.

If n is even, Dn =< a, x : an = x2 = e, xax = a−1 >. Let H1 = {1, x}, H2 =

{1, an2 }, H3 = {1, an2 x} be three order 2 subgroups. Then irreducible representations of

Dn are: 4 one-dimensional representations 1, χ1, χ2, χ3, and n−2
2

two-dimensional repre-

sentations ρ1, ..., ρn−2
2

, where χi is the character of Hi. We have, for each i, IndGHi1 =

1 + χi + ρ1 + · · ·+ ρn−2
2

.

LetK/Q be a degree n extension and K̂/Q be the Galois closure such thatGal(K̂/Q) '

Dn. Then if n is odd,

ζK(s)

ζ(s)
= L(s, ρ1) · · ·L(s, ρn−1

2
).

If n is even,

ζK(s)

ζ(s)
= L(s, χ)L(s, ρ1) · · ·L(s, ρn−2

2
),

where H = Gal(K̂/K) is one of the order 2 subgroup of Dn, and χ is the non-trivial

character of H.

3.5.2 D5 quintic extensions with signature (1, 2)

In section 2.2.3, we showed that

f(x, t) = x5 − tx4 + (2t− 1)x3 − (t− 2)x2 − 2x+ 1

gives rise to an D5 regular extension. When t ≤ 6, the signature of Kt is (1, 2). We prefer

that t varies in positive integers, we use f(x, t) = x5 + tx4− (2t+1)x3 +(t+2)x2−2x+1

from now on. Then its discriminant is (4t3 + 28t2 + 24t + 47)2. Since disc(f(x, t)) is a
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polynomial of degree 6, there is a constant C with disc(ft(x)) ≤ Ct6. For given X > 0,

let A = C1/6X. We define a set L(A) of square-free integers for A = C1/6X,

L(A) = {X
2
< t < X | 4t3 − 28t2 + 24t− 47 square-free, t ≡ sM modM}.

By Lemma 3.19, |L(A)| = β X
2M

+O( X

M(log X
M

)
1
2

) for some constant β. Hence |L(A)| �

A1−ε. Note that every t ∈ L(A) corresponds to a distinct automorphic L-function

L(s, ρt) =
∑∞

n=1 λt(n)n−s of GL(4)/Q with λt(q) = 4 for all k ≤ q ≤ y.

Let c0 = 31. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L(A) with

e = 6, d = 1 and T = (logA6)2, every automorphic L-function excluding exceptional

O(A98/100) L-functions has a zero-free region [α, 1] × [−(log dKt)
2, (log dKt)

2]. Let us

denote by L̂(A), the set of the automorphic L-functions with the zero-free region.

Applying Proposition 1.7 to this L-function L(s, ρ, t) in L̂(A), we have

logL(1, ρ, t) =
∑

p≤
√

log dKt

λ(p, t)

p
+On,α(1) (3.23)

= 4
∑

cf≤p≤
√

log dKt

1

p
+On,α(1) = 4 log log log dKt +On,α(1).

By the class number formula and Lemma 2.21,

hKt � dKt
1/2 (log log dKt)

4

(log dKt)
2
.

We summarize as follows:

Theorem 3.24. There is a constant c > 0 such that there exist K ∈ K(5, D5, 1, 2) with

arbitrary large discriminant dK for which

hK > cd
1/2
K

(log log dK)4

(log dK)2
.

3.5.3 D4 quartic extensions with signature (0, 2)

In section 2.2.2, we showed that

f(x, t) = x4 − x3 + (t+ 2)x2 − x+ 1
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gives rise to a D4 regular extension. Since disc(f(x, t)) = (t + 2)(t + 6)(1 − 4t)2 is a

polynomial of degree 4, there is a constant C with disc(ft(x)) ≤ Ct4. For given X > 0,

let A = C1/4X. We define a set L(A) of square-free integers for A = C1/4X,

L(A) = {X
2
< t < X | 1− 4t square-free , t ≡ sM mod M}.

If (1−4t) is square-free, then (1−4t) is the discriminant of the unique quadratic subfield

of Kt. Hence each t in L(A) corresponds to a distinct L-function L(s, ρ, t) and dKt is

divided at least by (1− 4t).

It is well-known that |L(A)| = 6
π2

∏
p|M

(
1− 1

p2

)−1
X

2M
+ O(X1/2). Hence |L(A)| �

A1−ε.

Let c0 = 21. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L(A) with

e = 4, d = 1 and T = (logA4)2, every automorphic L-function excluding exceptional

O(A98/100) L-functions has a zero-free region [α, 1] × [−(log dKt)
2, (log dKt)

2]. Let us

denote by L̂(A), the set of the automorphic L-functions with the zero-free region.

Applying Proposition 1.7 to this L-function L(s, ρ, t) in L̂(A), we have

logL(1, ρ, t) =
∑

p≤
√

log dKt

λ(p, t)

p
+On,α(1) (3.25)

= 3
∑

cf≤p≤
√

log dKt

1

p
+On,α(1) = 3 log log log dKt +On,α(1).

By the class number formula and (2.15),

hKt � dKt
1/2 (log log dKt)

3

(log dKt)
.

We summarize as follows:

Theorem 3.26. There is a constant c > 0 such that there exist K ∈ K(4, D4, 0, 2) with

arbitrary large discriminant dK for which

hK > cd
1/2
K

(log log dK)3

(log dK)
.
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3.5.4 D4 quartic extensions with signature (2, 1)

In section 2.2.2, we showed that

f(x, s) = x4 − sx3 + 3x2 − sx+ 1

gives rise to a D4 regular extension. Since disc(f(x, s)) = (s2 − 4)2(25 − 4s2) is a

polynomial of degree 6, there is a constant C with disc(f(x, s)) ≤ Cs6. For given X > 0,

let A = C1/6X. We define a set L(A) of square-free integers

L(A) = {X
2
< s < X | s2 − 4 square-free , s ≡ sM mod M}.

If (s2−4) is square-free, then (s2−4) is the discriminant of the unique quadratic subfield

of Ks. Hence each s in L(A) corresponds to a distinct L-function L(s, ρ, t) and dKs is

divided at least by (s2 − 4).

To estimate |L(A)|, we introduce Nair’s work.[50]. For an polynomial f(x) ∈ Z[x] of

degree d, we define,

Nk(f, x, h) = Nk(x, h) = |{n : x < n ≤ x+ h|f(n) : k-free}|.

He showed

Theorem 3.27 (Nair). If

f(x) =
m∏
i=1

(aix− bi)αi and α = max
i
αi,

then

Nk(x, h) =
∏
p

(
1− ρ(p2)

p2

)
h+O

(
h

(log h)k−1

)
for h = x(α/2k)+ε if k > α and ε > 0.

Theorem 3.27 implies

|L(A)| =
(

1− 1

4

)∏
p-M

(
1− 2

p2

)
X

2M
+O

(
X

M(log X
M

)

)
� A1−ε.
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Let c0 = 31. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L(A) with

e = 6, d = 1 and T = (logA6)2, every automorphic L-function excluding exceptional

O(A98/100) L-functions has a zero-free region [α, 1]×[−(log |dKs|)2, (log |dKs|)2] L-function

L(s, ρ, s) in L̂(A), we have

logL(1, ρ, s) =
∑

p≤
√

log |dKs |

λ(p, s)

p
+On,α(1) (3.28)

= 3
∑

cf≤p≤
√

log |dKs |

1

p
+On,α(1) = 3 log log log |dKs|+On,α(1).

By the class number formula and (2.17),

hKs � |dKs|
1/2 (log log |dKs |)3

(log |dKs|)2
.

We summarize as follows:

Theorem 3.29. There is a constant c > 0 such that there exist K ∈ K(4, D4, 2, 1) with

arbitrary large discriminant dK for which

hK > c|dK |1/2
(log log |dK |)3

(log |dK |)2
.

3.5.5 D4 quartic extensions with signature (4, 0)

In section 2.2.2, we showed that

f(x, s) = x4 − sx3 − x2 + sx+ 1

gives rise to a D4 regular extension. Since disc(f(x, s)) = (s2−4)2(4s2+9) is a polynomial

of degree 6, there is a constant C with disc(f(x, s)) ≤ Cs6. For given X > 0, let

A = C1/6X. We define a set L(A) of square-free integers

L(A) = {X
2
< s < X | s2 − 4 square-free , s ≡ sM mod M}.
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If (s2−4) is square-free, then (s2−4) is the discriminant of the unique quadratic subfield

of Ks. Hence each s in L(A) corresponds to a distinct L-function L(s, ρ, t) and dKs is

divided at least by (s2 − 4). As in the previous section, we can show that K(4, D4, 4, 0)

has infinitely many number fields with extreme class numbers and it is summarized as

follows:

Theorem 3.30. There is a constant c > 0 such that there exist K ∈ K(4, D4, 4, 0) with

arbitrary large discriminant dK for which

hK > cd
1/2
K

(log log dKt)
3

(log dKt)
3
.

3.5.6 D3 cubic extensions with signature (1, 1)

In section 2.2.1, we showed that

f(x, t) = x3 + tx− 1

gives rise to a D3 regular extension. Since disc(f(x, t)) = −(4t3 + 27) is a polynomial of

degree 3, there is a constant C with |disc(ft(x))| ≤ Ct3. For given X > 0, let A = C1/3X.

We define a set L(A) of square-free integers

L(A) = {X
2
< t < X | 4t3 + 27 square-free , t ≡ sM mod M}.

Note that each t in L(A) corresponds to a distinct L-function L(s, ρ, t).

By Lemma 3.19, |L(A)| = β X
2M

+O
(

X
M(log X

M
)1/2

)
for some β, |L(A)| � A1−ε.

Let c0 = 16. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L(A) with

e = 3, d = 1 and T = (logA3)2, every automorphic L-function excluding exceptional

O(A98/100) L-functions has a zero-free region [α, 1] × [−(log |dKs|)2, (log |dKs|)2]. Let us

denote by L̂(A), the set of the automorphic L-functions with the zero-free region.

Applying Proposition 1.7 to this L-function L(s, ρ, s) in L̂(A), we have
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logL(1, ρ, s) =
∑

p≤
√

log |dKt |

λ(p, t)

p
+On,α(1) (3.31)

= 2
∑

cf≤p≤
√

log |dKt |

1

p
+On,α(1) = 2 log log log |dKt |+On,α(1).

By the class number formula and (2.13),

hKs � |dKs|
1/2 (log log |dKs|)2

(log |dKs|)
.

We summarize as follows:

Theorem 3.32. There is a constant c > 0 such that there exist K ∈ K(3, D3, 1, 1) with

arbitrary large discriminant dK for which

hK > c|dK |1/2
(log log |dK |)2

(log |dK |)
.

3.6 Cyclic Groups

3.6.1 Simplest Sextic Fields

For f(x, t) = f(x, t) = x6 − t−6
2
x5 − 5 t+6

4
x4 − 20x3 + 5 t−6

4
x2 + t+6

2
x+ 1, we checked that

f(x, (6r + 3)(36r2 + 36r + 18)) gives rise to a C6 regular extension.

Since disc(f(x, (6r + 3)(36r2 + 36r + 18)) = 26321(3r2 + 3r + 1)10(12r2 + 12r + 7)5,

there is a constant C with disc(f(x, (6r+ 3)(36r2 + 36r+ 18)) ≤ Cr30. Now define a set

L(A) for A = C1/30X.

L(A) =

{
X

2
< r < X | 3r2 + 3r + 1 and 12r2 + 12r + 7 square-free, r ≡ sM mod M

}
.

we can show that A1−ε � |L(A)| � A. Note that each r in L(A) corresponds to a

distinct L-function.

Let c0 = 76. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L(A) with

e = 30, d = 1 and T = (logA30)2, every automorphic L-function excluding exceptional
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O(A98/100) L-functions has a zero-free region [α, 1] × [−(log dKt)
2, (log dKt)

2]. Let us

denote by L̂(A), the set of the automorphic L-functions with the zero-free region.

Applying Proposition 1.7 to this L-function L(s, ρ, t) in L̂(A), we have

logL(1, ρ, t) =
∑

p≤
√

log dKt

λ(p, t)

p
+On,α(1) (3.33)

= 5
∑

cf≤p≤
√

log dKt

1

p
+On,α(1) = 5 log log log dKt +On,α(1).

By the class number formula and (2.11),

hKt � dKt
1/2 (log log dKt)

5

(log dKt)
5
.

We summarize as follows

Theorem 3.34. There is a constant c > 0 such that there exist K ∈ K(6, C6, 6, 0) with

arbitrary large discriminant dK for which

hK > cd
1/2
K

(log log dK)5

(log dK)5
.

3.6.2 Simplest Quintic fields

Smith [67] showed that Lehmer’s polynomial f(x, t) = x5 + t2x4 − (2t3 + 6t2 + 10t +

10)x3 + (t4 + 5t3 + 11t2 + 15t+ 5)x2 + (t3 + 4t2 + 10t+ 10)x+ 1 generates a C5 regular

extension. Since the discriminant is a polynomial of degree 22, there is a constant C with

disc(f(x, t)) ≤ Ct22.

For A = C1/22X, let L(A) be a finite set given by

L(A) = {X
2
< t < X | t4 + 5t3 + 15t2 + 25t+ 25 cubic-free and t ≡ tM modM}.

Then by Lemma 3.19, we have A1−ε � L(A)� A.

Let c0 = 56. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L(A) with

e = 22, d = 1 and T = (logA22)2, every automorphic L-function excluding exceptional
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O(A98/100) L-functions has a zero-free region [α, 1] × [−(log dKt)
2, (log dKt)

2]. Let us

denote by L̂(A), the set of the automorphic L-functions with the zero-free region.

Applying Proposition 1.7 to this L-function L(s, ρ, t) in L̂(A), we have

logL(1, ρ, t) =
∑

p≤
√

log dKt

λ(p, t)

p
+On,α(1) (3.35)

= 4
∑

cf≤p≤
√

log dKt

1

p
+On,α(1) = 4 log log log dKt +On,α(1).

By the class number formula and (2.10),

hKt � dKt
1/2 (log log dKt)

4

(log dKt)
4
.

We summarize as follows

Theorem 3.36. There is a constant c > 0 such that there exist K ∈ K(5, C5, 5, 0) with

arbitrary large discriminant dK for which

hK > cd
1/2
K

(log log dK)4

(log dK)4
.

3.6.3 Simplest Quartic fields

In section 2.1.1,we showed that f(x, t) = x4 − tx3 − 6x2 + tx+ 1 generates a C4 regular

extension. Since the discriminant disc(f(x, t)) = 4(t2 + 16)3 is a polynomial of degree 6,

there is a constant C with disc(f(x, t)) ≤ Ct6.

For A = C1/6X, let L(A) be a finite set given by

L(A) = {X
2
< t < X | t even, t ≡ tM mod M}.

Then we have A1−ε � L(A) � A. We can determine the discriminant dKt with 2-adic

valuation ν2(t) of t and it is at least (t2+16)3

64
.(See [41]) So every t ∈ L(A) corresponds to

a distinct L-function.
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Let c0 = 16. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L(A) with

e = 6, d = 1 and T = (logA6)2, every automorphic L-function excluding exceptional

O(A98/100) L-functions has a zero-free region [α, 1] × [−(log dKt)
2, (log dKt)

2]. Let us

denote by L̂(A), the set of the automorphic L-functions with the zero-free region.

Applying Proposition 1.7 to this L-function L(s, ρ, t) in L̂(A), we have

logL(1, ρ, t) =
∑

p≤
√

log dKt

λ(p, t)

p
+On,α(1) (3.37)

= 3
∑

cf≤p≤
√

log dKt

1

p
+On,α(1) = 3 log log log dKt +On,α(1).

By the class number formula and (2.8),

hKt � dKt
1/2 (log log dKt)

3

(log dKt)
3
.

We summarize as follows

Theorem 3.38. There is a constant c > 0 such that there exist K ∈ K(4, C4, 4, 0) with

arbitrary large discriminant dK for which

hK > cd
1/2
K

(log log dK)3

(log dK)3
.



Chapter 4

Logarithmic derivatives of Artin

L-functions

This chapter is written based on the joint work [9] with H. Kim. We follow [9] closely.

4.1 Euler-Kronecker Constants

Let K be a number field of degree n with discriminant dK and ζK(s) be the Dedekind

zeta function of K, with the Laurent expansion at s = 1:

ζK(s) = c−1(s− 1)−1 + c0 + c1(s− 1) + c2(s− 1)2 + · · ·

Then γK = c0
c−1

is called the Euler-Kronecker constant of K. If K = Q, then γQ is

just the Euler constant γ = 0.57721566 · · ·. When K is an imaginary quadratic field, the

Kronecker limit formula express γK in terms of special values of the Dedekind η-function.

It was Ihara who began a study of Euler-Kronecker constant systematically. We refer to

[29] for the detail.

We can see that
ζ′K
ζK

(s) = − 1
s−1

+γK +(s−1)h(s), for some holomorphic function h(s)

at s = 1. Let K̂ be the Galois closure of K. Then we have ζK(s) = ζ(s)L(s, ρ) for some

61
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n− 1 dimensional complex representation ρ of the Galois group Gal(K̂/Q). So we have

γK = γ +
L′

L
(1, ρ). (4.1)

This is one of the motivations to study the logarithmic derivatives at s = 1. Ihara

[29] found a upper bound and a lower bound for γK under GRH. The main term of his

upper and lower bound under GRH are

2 log log
√
|dK |, −2(n− 1) log

(
log
√
|dK |

n− 1

)
.

In [30], page 260, the authors remarked that in the case of Dirichlet characters, the

coefficient 2 can be replaced by 1 + o(1). In section 4.7, we prove that under the Artin

conjecture, GRH and certain zero density hypothesis (Conjecture 4.19), the upper and

lower bound are

log log |dK |+O(log log log |dK |), −(n− 1) log log |dK |+O(log log log |dK |),

resp. The lower bound comes from number fields where almost all small primes split

completely. This agrees with Ihara’s observation ([29], page 409) that number fields with

many primes having small norms have the lower bound.

When K is a quadratic field Q(
√
d), the value L′

L
(1, χd) determines γQ(

√
d) where χd is

the Dirichlet character attached to the quadratic field Q(
√
d). Recently, Mourtada and

Murty [48] showed unconditionally that there are infinitely many Dirichlet L-functions

of quadratic characters whose logarithmic derivative at s = 1 have large values. Namely,

there are infinitely many fundamental discriminants d such that
∣∣−L′

L
(1, χd)

∣∣� log log |d|.

This implies that
∣∣∣γQ(

√
d)

∣∣∣ � log log |d| for infinitely many quadratic fields Q(
√
d). We

realized that the techniques we used to obtain extreme values of L(1, ρ) in [6], [7], [8],

can be applied to generalize their result to arbitrary Artin L-functions.

Under several assumptions (the strong Artin Conjecture, Assumptions 4.4 and 4.5),

we show in section 4.2 that there are infinitely many number fields such that

L′

L
(1, ρ) ≥ log log |dK |+O(log log log |dK |), (4.2)
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and infinitely many number fields such that

L′

L
(1, ρ) ≤ −(n− 1) log log |dK |+O(log log log |dK |). (4.3)

4.2 Extreme values of L′

L (1, ρ)

In this section, we describe how to obtain extreme positive or negative values of L
′

L
(1, ρ) in

a general setting. Suppose Kt ∈ K(n,G, r1, r2). Let ρt be the n− 1 dimensional complex

representation of the Galois group Gal(K̂/Q) given by ζKt(s) = ζ(s)L(s, ρt). Then

the conductor of ρt is |dKt |. Now we assume that ρt is modular, i.e., an automorphic

representation of GLn−1. The discriminant of f(x, t) is a polynomial in t. We expect that

regular Galois extension property implies that the field discriminant |dKt | will increase

with respect to t.

Assumption 4.4. log |dKt | �f log |t|.

4.2.1 Extreme positive values of L′

L (1, ρ)

Let G be a finite group having property GalT and let f(x, t) ∈ Z[t][x] be an irreducible

polynomial of degree n whose splitting field over Q(t) is a regular extension with Galois

group G. Let Kt be the number field obtained by adjoining a root of f(x, t) to the

rational number field Q for a specialization t ∈ Z and let K̂t be its Galois closure. Let

L(s, ρ, t) =
∑∞

l=1 λ(l, t)l−s be the Artin L-function
ζKt (s)

ζ(s)
.

Note that the conductor of L(s, ρ, t) is |dKt |, and for unramified prime p, λ(p, t) =

N(p, t) − 1, where N(p, t) is the number of solutions of f(x, t) ≡ 0 (mod p). Hence

−1 ≤ λ(p, t) ≤ n− 1.

The Galois group Gal(K̂t/Q) ' G acts on the set X = {x1, x2, · · · , xn} of roots of

f(x, t) transitively. Let G0 be the set of g ∈ G with no fixed point. Then G0 is not empty

and |G0|
|G| ≥

1
n

(see [62], page 430). Choose any g0 ∈ G0 and let [g0] be the conjugacy class
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of g0 in G. If the Frobenius element of p belongs to [g0], then f(x, t) ≡ 0 (mod p) has no

root and hence λ(p, t) = −1.

Since f(x, t) gives rise to a regular extension, by Theorem 2.1, there is a constant cf

depending on f such that for any prime p ≥ cf , there is an integer ip so that for any

t ≡ ip (mod p), the Frobenius element of p belongs to [g0]. For X > 0, let y = logX
log logX

and M =
∏

cf≤p≤y p. Note that M � ey = e
logX

log logX �ε X
ε for any ε > 0.

Let iM be an integer such that iM ≡ ip (mod p) for all cf ≤ p ≤ y. So if t ≡ iM (mod

M), for all cf ≤ p ≤ y, p belongs to [g0] and λ(p, t) = −1.

Assume that the discriminant of f(x, t) is a polynomial in t of degree D. Then there

is a constant C such that |dKt| ≤ CtD. For A = C1/DX, we define a set L(A) of positive

numbers given by

L(A) = {X
2
< t < X | t ≡ iM (mod M), Gal(K̂t/Q) ' G}.

Under the strong Artin Conjecture, every t in L(A) corresponds to an automorphic

L-function of GL(n− 1) over Q. But it is possible that different t ∈ L(A) correspond to

the same automorphic L-function. See Theorem 3.2.

Assumption 4.5. There exists a finite set T ⊂ Z, depending only on f , such that

L(s, ρ, t)’s are distinct for all t ∈ L(A)\T .

Let L̃(A) be the set of automorphic L-functions coming from L(A) after removing

the possible repetition of the same L-functions among them. In sections 4.4 through 4.6,

we consider explicit examples of families of number fields. In those cases, we may have

to put more conditions in L(A) in order to satisfy Assumption 4.5, or replace it by some

other set. In any case, we show that A1−ε � |L̃(A)| � A for any fixed ε > 0.

Let c0 = 5(n−1)D
2

+ 1. Or we may replace (n − 1) in c0 by a smaller constant if ρ is

not irreducible. Choose α with c0
1−α
2α−1

< 98
100

. By applying Theorem 1.10 to L̃(A) with

e = D, d = 1 and T = (logAD)2, every automorphic L-function excluding exceptional
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O(A98/100) L-functions has a zero-free region [α, 1] × [−(log |dKt |)2, log |dKt |)2]. Let us

denote by L̂(A), the set of the automorphic L-functions with the zero-free region.

Applying Proposition 1.9 to this L-function L(s, ρ, t) in L̂(A) with x = (logCXD)
16

1−α ,

we have

L′

L
(1, ρ, t) = −

∑
p≤x2

λ(p, t) log p

p
+On,x,α(1) (4.6)

=
∑

cf≤p≤y

log p

p
−
∑

y<p≤x2

λ(p, t) log p

p
+On,x,α(1)

= log logX −
∑

y<p≤x2

λ(p, t) log p

p
+O(log log logX).

(Here we use the fact that
∑

p≤y
log p
p

= log y +O(1), and y = logX
log logX

.)

Now we sum the logarithmic derivative L′

L
(1, ρ, t) over L̂(A), namely, consider

∑
L(s,ρ,t)∈L̂(A)

L′

L
(1, ρ, t).

We need to deal with the sum

∑
L(s,ρ,t)∈L̂(A)

∑
y<p≤x2

λ(p, t) log p

p
=

∑
y<p≤x2

log p

p

∑
L(s,ρ,t)∈L̂(A)

λ(p, t).

In the next section, we prove the following proposition:

Proposition 4.7. For all y < p ≤ x2,

∑
L(s,ρ,t)∈L̂(A)

λ(p, t)� |L̂(A)|
√
p

+
|L̂(A)|

(logX)
1
2

.

where the implied constant is independent of p for y < p ≤ x2.

Proposition 4.7 implies

∑
L(s,ρ,t)∈L̂(A)

∑
y<p≤x2

λ(p, t) log p

p
� |L̂(A)|

∑
y<p≤x2

log p

p3/2
+
|L̂(A)|

(logX)
1
2

∑
y<p≤x2

log p

p

� |L̂(A)|
y1/2

+
|L̂(A)| log logX

(logX)
1
2

.
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Hence we have∑
L(s,ρ,t)∈L̂(A)

L′

L
(1, ρ, t) = |L̂(A)| log logX +O(|L̂(A)| log log logX).

Now note that |dKt | ≤ CtD and t < X. So if there are only finitely many L-functions

with L′

L
(1, ρ, t) ≥ log log |dKt | + O(log log log |dKt |), they cannot reach the average value

log logX asX increases. Hence we proved the following under the Strong Artin conjecture

and Assumptions 4.4 and 4.5,

Theorem 4.8. There are infinitely many L(s, ρ, t) in L̂(A) such that

L′

L
(1, ρ, t) ≥ log log |dKt |+O(log log log |dKt |).

4.2.2 Extreme negative values of L′

L (1, ρ)

To generate a negative L′

L
(1, ρ, t), but whose absolute value is large, we need to manipulate

λ(p, t) so that λ(p, t) = n− 1 for all primes p between cf and y = logX
log logX

in (4.6).

Since f(x, t) gives rise to a regular Galois extension, by Theorem 2.1, for any prime

p ≥ cf , there is an integer sp so that for any t ≡ sp (mod p), the Frobenius element of

p is the identity in G. For X > 0, let M =
∏

cf≤p≤y p. Let sM be an integer such that

sM ≡ sp (mod p) for all cf ≤ p ≤ y. So if t ≡ sM (mod M), for all cf ≤ p ≤ y, p splits

completely in K̂t, and λ(p, t) = n− 1.

For A = C1/DX, we define a set L(A), L̃(A) and L̂(A) as in the previous section.

Then as in (4.6),

L′

L
(1, ρ, t) = −(n− 1) log logX −

∑
y<p≤x2

λ(p, t) log p

p
+O(log log logX).

Then by Proposition 4.7,∑
L(s,ρ,t)∈L̂(A)

L′

L
(1, ρ, t) = −(n− 1)|L̂(A)| log logX +O(|L̂(A)| log log logX).

Hence we proved the following under the Strong Artin Conjecture and Assumptions

4.4 and 4.5,
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Theorem 4.9. There are infinitely many L-functions L(s, ρ, t) in L̂(A) with

L′

L
(1, ρ, t) ≤ −(n− 1) log log |dKt |+O(log log log |dKt |).

4.3 Proof of Proposition 4.7

For a fixed prime p, consider the equation f(x, t) ≡ 0 (mod p). Now we consider f(x, t)

as a algebraic curve over Z/pZ. Let Ai be the number of t (mod p) such that λ(p, t) = i,

i.e., f(x, t) ≡ 0 (mod p) has i+ 1 roots. Then we have

n−1∑
i=−1

Ai = p+O(1),

where O(1) is bounded by D, the degree of discriminant of f(x, t).

Recall Weil’s celebrated theorem on rational points of a curve over a finite field. ([58],

page 75):

Theorem 4.10. Let f(x, y) ∈ Fp[x, y] be absolutely irreducible and of total degree d > 0.

Let N be the number of zeros of f in Fp × Fp. Then

|N − p| ≤ (d− 1)(d− 2)
√
p+ c(d),

for a constant c(d).

Weil’s theorem implies

n−1∑
i=−1

(i+ 1)Ai = p+O(
√
p).

Hence we obtain
n−1∑
i=−1

iAi = O(
√
p). (4.11)

Now we define Qi = {1
2
X < t < X | t ∈ L(A) and t ≡ i (mod)p} and write

L(A) = Q0 ∪Q1 ∪ · · · ∪Qp−1.
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Let R be a finite subset of {0, 1, 2, · · · , p − 1} for which k ∈ R if and only if p is

ramified for t ∈ Qk. Then we prove the following in the examples in sections 4.4 through

4.6:

|Qi| = cp
|L(A)|
p

+O

(
|L(A)|

p(logX)
1
2

)
for 6∈ R (4.12)

where cp is a constant close to 1, independent of i. (We can show that 1
2
< cp < 2.)

Since
∑

L(s,ρ,t)∈L̂(A)

λ(p, t) =
∑

L(s,ρ,t)∈L(A)

λ(p, t) +O(X98/100), in order to prove Proposi-

tion 4.7, it is enough to show that∑
L(s,ρ,t)∈L(A)

λ(p, t)� |L(A)|
√
p

+
|L(A)|

(logX)
1
2

.

When k ∈ R, ∣∣∣∣∣∣
∑

L(s,ρ,t)∈Qk

λ(p, t)

∣∣∣∣∣∣ ≤ (n− 1)
|L(A)|
p

+O(1).

If k /∈ R, p is unramified for all t ∈ Qk, and λ(p, t) = j(k) for a unique j(k). In that case,∑
L(s,ρ,t)∈Qk

λ(p, t) = j(k)cp
|L(A)|
p

+O

(
|L(A)|

p(logX)
1
2

)
.

Hence ∑
L(s,ρ,t)∈L(A)

λ(p, t) =
∑
k∈R

∑
L(s,ρ,t)∈Qk

λ(p, t) +
∑
k/∈R

∑
L(s,ρ,t)∈Qk

λ(p, t).

Here ∑
k∈R

∑
L(s,ρ,t)∈Qk

λ(p, t)� |L(A)|
p

,

where the implied constant is independent of p. On the other hand,∑
k/∈R

∑
L(s,ρ,t)∈Qk

λ(p, t) =
∑
k/∈R

j(k)|Qk| = cp
|L(A)|
p

∑
k/∈R

j(k) +O

(
|L(A)|

(logX)
1
2

)

= cp
|L(A)|
p

n−1∑
j=−1

jAj +O

(
|L(A)|

(logX)
1
2

)
.

By (4.11), ∑
L(s,ρ,t)∈L(A)

λ(p, t)� |L(A)|
√
p

+
|L(A)|

(logX)
1
2

.
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4.4 Cyclic and Dihedral extensions

Cyclic and dihedral extensions satisfy GalT property. Hence given G, a cyclic or dihedral

group, there exists a polynomial f(x, t) ∈ Z[t][x] whose splitting field over Q(t) is a regular

Galois extension and whose Galois group is G. We give some details for quadratic and

cyclic cubic extensions.

4.4.1 Quadratic extensions

Consider Kt = Q[
√
t] for t square free and t ≡ 1 (mod 4). Consider, for M = 4

∏
3≤p≤y p,

L(X)1 = {X
2
< t < X| t square-free and t ≡ sM (mod M)}

L(X)2 = {X
2
< t < X| t square-free and t ≡ iM (mod M)}.

Then Assumptions 4.4 and 4.5 are clear. We verify (4.12) in the case of L(X)2:

Qi = {X
2
< t < X| t square free, t ≡ iM (mod M), t ≡ i (mod p)}.

Since p > y, (p,M) = 1 and if i 6= 0, by [18], page 248,

|Qi| =
3

π2

∏
q|M

(1− q−2)−1 X

M
(1− p−2)−1 1

p
+O(X

1
2 ) = cp

|L(X)2|
p

+O(X
1
2 ),

where cp = (1− p−2)−1 and 1 < cp < 2. Since p� (logX)
32

1−α , X
1
2 � |L(X)2|

p(logX)
1
2

. Here we

considered real quadratic fields. However, the same argument is applicable to imaginary

quadratic fields. So Theorem 4.8 and Theorem 4.9 are now stated as follows:

Theorem 4.13. (1) There are infinitely many real quadratic fields Q(
√
t) (resp, imagi-

nary quadratic fields Q(
√
t)) with

L′

L
(1, χt) ≤ − log log |t|+O(log log log |t|).

(2) There are infinitely many real quadratic fields Q(
√
t) (resp, imaginary quadratic fields

Q(
√
t)) with

L′

L
(1, χt) ≥ log log |t|+O(log log log |t|).
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4.4.2 Cyclic Cubic extensions

Consider

f(x, t) = x3 − tx2 − (t+ 3)x− 1,

for t ∈ Z+. Its discriminant is g(t)2 with g(t) = t2 + 3t + 9. Then Kt/Q is a C3

Galois extension, and L(s, ρ, t) = L(s, χt)L(s, χt), where χt, χt are two non-principal

characters of C3. The conductor fχt of χt is g(t) when g(t) is square-free. Note also that

L′

L
(1, ρ, t) = 2Re

(
L′

L
(1, χt)

)
. Consider, for M = 6

∏
5≤p≤y

p,

L(A)1 = {X
2
< t < X| g(t) square-free, t ≡ sM (mod M)}

L(A)2 = {X
2
< t < X| g(t) square-free, t ≡ iM (mod M)}.

Then Assumptions 4.4 and 4.5 are clear. We verify (4.12) in the case of L(A)2:

Qi = {X
2
< t < X| g(t) square free, t ≡ iM (mod M), t ≡ i (mod p)}.

Define R′ be the set of solutions t (mod p) for g(t) ≡ 0 mod p. Then R′ has at most

2 elements. So it is enough to consider i /∈ R′. Since p > y, (p,M) = 1 and for i 6∈ R′,

by [17],

|Qi| =
∏
q-M

(
1−

(
1 +

(
−3

q

))
q−2

)
X

2M

(
1−

(
1 +

(
−3

p

))
p−2

)−1
1

p
+O(X

2
3 logX)

= cp
|L(A)2|

p
+O(X

2
3 logX),

where cp = (1 − (1 + (−3
p

))p−2)−1 and 1
2
< cp < 2. Since p � (logX)

32
1−α , X

2
3 logX �

|L(A)2|
p(logX)

1
2

. So Theorem 4.8 and Theorem 4.9 are now stated as follows:

Theorem 4.14. (1) There are infinitely many L(s, ρ, t) with

L′

L
(1, ρ, t) ≤ −2 log log |dKt |+O(log log log |dKt |), Re

(
L′

L
(1, χt)

)
≤ − log log fχt+O(log log log fχt).

(2) There are infinitely many L(s, ρ, t) with

L′

L
(1, ρ, t) ≥ log log |dKt |+O(log log log |dKt |), Re

(
L′

L
(1, χt)

)
≥ 1

2
log log fχt+O(log log log fχt).
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4.4.3 Dihedral and cyclic extensions

For higher degree extensions, we recall the explicit examples from Chapter 2.

K(6, C6, 6, 0) : f(x, t) = x6 − 2tx5 − 5(t+ 3)x4 − 20x3 + 5tx2 + 2(t+ 3)x+ 1

K(5, D5, 5, 0) : f(x, t) = x5 − tx4 + (2t− 1)x3 − (t− 2)x2 − 2x+ 1, t > 7

K(5, D5, 1, 2) : f(x, t) = x5 + tx4 − (2t+ 1)x3 + (t+ 2)x2 − 2x+ 1, t ≥ 0

K(5, C5, 5, 0) : f(x, t) = x5 + t2x4 − (2t3 + 6t2 + 10t+ 10)x3 + (t4 + 5t3 + 11t2 + 15t+ 5)x2

+ (t3 + 4t2 + 10t+ 10)x+ 1

K(4, D4, 4, 0) : f(x, t) = x4 − tx3 − x2 + tx+ 1

K(4, D4, 2, 1) : f(x, t) = x4 − tx3 + 3x2 − tx+ 1

K(4, D4, 0, 2) : f(x, t) = x4 − x3 + (t+ 2)x2 − x+ 1

K(4, C4, 4, 0) : f(x, t) = x4 − tx3 − 6x2 + tx+ 1

K(3, D3, 3, 0) : f(x, t) = (x− t)(x− 4t)(x− 9t)− t

K(3, D3, 1, 1) : f(x, t) = x3 + tx− 1

Here in the case of C6, we do not need to specialize t as in section 3.6.1 since we do

not need to find units.

The strong Artin conjecture is valid in all of the above cases. We recall the definition

of the sets L(A) in each cases. We only write for the extreme positive value case.
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K(6, C6, 6, 0) : L(A) = {X
2
< t < X | t2 + 3t+ 9 square-free, and t ≡ iM (mod M)}

K(5, D5, 5, 0) : L(A) = {X
2
< t < X | 4t3 − 28t2 + 24t− 47 square-free and t ≡ iM (mod M)}

K(5, D5, 1, 2) : L(A) = {X
2
< t < X | 4t3 + 28t2 + 24t+ 47 square-free and t ≡ iM (mod M)}

K(5, C5, 5, 0) : L(A) = {X
2
< t < X | t4 + 5t3 + 15t2 + 25t+ 25 cubic-free and t ≡ iM (mod M)}

K(4, D4, 4, 0) : L(A) = {X
2
< t < X | t2 − 4 square-free and t ≡ iM (mod M)}

K(4, D4, 2, 1) : L(A) = {X
2
< t < X | t2 − 4 square-free and t ≡ iM (mod M)}

K(4, D4, 0, 2) : L(A) = {X
2
< t < X | 1− 4t square-free and t ≡ iM (mod M)}

K(4, C4, 4, 0) : L(A) = {X
2
< t < X | t even and t ≡ iM (mod M)}

K(3, D3, 3, 0) : L(A) = {X
2
< t < X | t square-free and t ≡ iM (mod M)}

K(3, D3, 1, 1) : L(A) = {X
2
< t < X | 4t3 + 27 square-free and t ≡ iM (mod M)}

Except the case of K(3, D3, 3, 0), Assumptions 4.4 and 4.5 are shown in Chapter 3.

Since f(x, t) = (x − t)(x − 4t)(x − 9t) − t is an Eisenstein polynomial for square-free t,

log dKt � log t. We prove Assumption 4.5 as follows: We claim that p|t if and only if p

is totally ramified in Kt: If p|t, by [11], page 315, p is totally ramified. Conversely, if p

is totally ramified and p - t, f(x, t) ≡ (x + a)3 (mod p). If we compare the coefficients

of f(x, t) (mod p), we obtain contradiction. Therefore, Kt’s are distinct for all t ∈ L(A)

and showed Assumption 4.5.

Now we show that (4.12) holds for these cases. For the cases of C6, D4 and C4, it can

be verified as in the quadratic and cyclic cubic cases. Consider the case of D5, (1, 2):

Qi = {X
2
< t < X | 4t3 + 28t2 + 24t+ 47 square-free and t ≡ iM (mod M), and t ≡ i (mod p)}.

Let R′ be the set of solutions t (mod p) for 4t3 + 28t2 + 24t+ 47 ≡ 0 (mod p). Then R′

has at most 3 elements. Hence it is enough to consider i /∈ R′. For i /∈ R′, by Lemma

3.19,

|Qi| =
∏
q-M

(
1− ρ(q2)

q2

)(
1− ρ(p2)

p2

)−1
1

p

X

2M
+O

(
X

pM

(
log

X

pM

)− 1
2

)
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= cp
|L(A)|
p

+O

(
X

pM

(
log

X

pM

)− 1
2

)
,

where ρ(p2) is the number of solutions for 4t3 + 28t2 + 24t + 47 ≡ 0 (mod p2), and

cp =
(

1− ρ(p2)
p2

)−1

. Here 1 < cp < 2. Since (1− ε) logX < log X
pM

< logX for any ε > 0,

we have

X

pM

(
log

X

pM

)− 1
2

� |L(A)|
p(logX)

1
2

.

The cases of D3, (1, 1) and D5, (5, 0) and D5, (1, 2) are similar.

Consider the case of C5:

Qi = {X
2
< t < X | t4 + 5t3 + 15t2 + 25t+ 25 cubic-free and t ≡ iM (mod M), and t ≡ i (mod p)}.

Let R′ be the set of solutions t (mod p) for t4 + 5t3 + 15t2 + 25t+ 25 ≡ 0 (mod p). Then

R′ has at most 4 elements. Hence it is enough to consider i /∈ R′. For i /∈ R′, by Lemma

3.19,

|Qi| =
∏
q-M

(
1− ρ(p3)

p3

)(
1− ρ(p3)

p3

)−1
1

p

X

2M
+O

(
X

pM

(
log

X

pM

)− 3
5

)

= cp
|L(A)|
p

+O

(
X

pM

(
log

X

pM

)− 3
5

)
,

where ρ(p3) is the number of solutions for t4 + 5t3 + 15t2 + 25t + 25 ≡ 0 (mod p3), and

cp =
(

1− ρ(p3)
p3

)−1

. Here 1 < cp < 2. Clearly, we have

X

pM

(
log

X

pM

)− 3
5

� |L(A)|
p(logX)

1
2

.

Hence Theorem 4.8 and Theorem 4.9 are valid for the above examples.



Chapter 4. Logarithmic derivatives of Artin L-functions 74

4.5 Alternating Groups

4.5.1 A4 Galois extensions

Consider from section 2.3.1 and [67]:

K(4, A4, 0, 2) : f(x, t) = x4 + 18x2 − 4tx+ t2 + 81

K(4, A4, 4, 0) : f(x, t) = x4 + 18tx3 + (81t2 + 2)x2 + 2t(54t2 + 1)x+ 1

All these polynomials generate regular Galois extensions and the strong Artin con-

jecture is true. In the first case, Assumption 4.4 was verified in 2.3.1. The second case

is similar: Note that disc(f(x, t)) = 162t2(27t2 − 4)2(27t2 + 4)2. So if t is square free,

Newton polygon argument shows that t|dKt . (If p|t, then pZKt = p2 for a prime ideal p.)

Hence log dKt � log |t|.

K(4, A4, 0, 2) : L(A) = {X
2
< t < X : t(t2 + 108) square-free and t ≡ iM (mod M)}

K(4, A4, 4, 0) : L(A) = {X
2
< t < X : t is square free and t ≡ iM (mod M)}

In the case of A4, (0, 2), t(t2 +108) is no longer irreducible so we can’t apply Theorem

3.19. We need Nair’s work [50] Here. He showed

Theorem 4.15 (Nair). If

f(x) =
m∏
i=1

(fi(x))αi ∈ Z[x],

where each fi is irreducible, α = maxi αi and deg fi(x) = gi, then

Nk(x, h) =
∏
p

(
1− ρ(pk)

pk

)
h+O

(
h

(log h)k−1

)
for h = xθ where 0 < θ < 1 and k ≥ maxi{λgiαi}, (λ =

√
2− 1/2) provided that at least

one gi ≥ 2.

Theorem 4.15 implies that

|L(A)| =
∏
p-M

(
1− ρ(p2)

p2

)
X

2M
+O

(
X

M log X
M

)
.
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For both cases, (4.12) is verified easily. For the first case, Assumption 4.5 is true.

However, for the second polynomial Assumption 4.5 remains to be proved. Hence Theo-

rem 4.8 and Theorem 4.9 are valid modulo Assumption 4.5.

4.5.2 A5 Galois extension

Consider the polynomial f(x, t) = x5 + 5(5t2 − 1)x− 4(5t2 − 1) from section 2.3.2.

If Kt = Q[αt] for t ∈ Z, Kt has signature (1, 2). Let K̂t be the Galois closure. Then

G has a subgroup H isomorphic to A4 such that K̂t

H
= Kt. Let IndGH 1H = 1 + ρ

be the induced representation of G by the trivial representation of H where ρ is the

4-dimensional representation of A5, so that L(s, ρ, t) =
ζKt(s)

ζ(s)
.

Now by [36], page 498, ρ is equivalent to a twist of σ ⊗ στ by a character, where

σ, στ are the icosahedral 2-dimensional representations of Ã5 ' SL2(F5). Since Kt is not

totally real, σ and στ are odd. Hence by [35], Corollary 10,2, σ, στ are modular, i.e., they

are attached to cuspidal representations π, πτ of GL2/Q. By [53], the functorial product

π� πτ is a cuspidal representation of GL4/Q. Hence L(s, ρ, t) is a cuspidal automorphic

L-function of GL4/Q.

Let

L(A) = {X
2
< t < X | 5t2 − 1 square-free, t even, t ≡ iM (mod M)}.

Now we show Asssumption 4.5.

To verify Assumption 4.5, it is enough that Kt are not isomorphic for odd square-

free 5t2 − 1. Suppose 5t2 − 1 is square free for even t. Now we prove that the primes

p who ramifies totally in Kt are exactly prime divisors of 5t2 − 1. Since f(x, t) is an

Eisenstein polynomial with respect to each prime divisor of 5t2 − 1, p ramifies totally

in Kt. Conversely, assume that a prime p ramifies totally and is not a prime divisor of

5t2− 1. If p = 2, then f(x, t) ≡ x(x4 + 1) mod 2. Hence p does not ramifies totally. Now

assume that p is not 2 and not a prime divisor of 5t2 − 1. Then we should have that
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f(x, t) ≡ (x+ a)5 mod p with a 6≡ 0 mod p and it forces that p = 5 and a = 4. However,

by Newton polygon method, 5OKt = p1p
4
2.

In this case, (4.12) is verified as in D4, (4, 0) case. So Theorem 4.8 and Theorem 4.9

are valid.

4.6 Symmetric Groups

4.6.1 S4 Galois extensions

Consider from section 2.4.1:

K(4, S4, 4, 0) : f(x, t) = (x− t)(x− 4t)(x− 9t)(x− 16t)− t

K(4, S4, 2, 1) : f(x, t) = x2(x− 10t)(x− 18t) + t

K(4, S4, 0, 2) : f(x, t) = x4 + tx2 + tx+ t

All these polynomials generate regular Galois extensions and the strong Artin con-

jecture is true. We define L(A) as

L(A) = {X
2
< t < X | t square-free, t ≡ iM (mod M)}.

Assumptions 4.4 and 4.5 are shown in Chapters 2 and 3.

In these cases, (4.12) is verified as in the quadratic case.

Hence Theorem 4.8 and Theorem 4.9 are valid unconditionally.

4.6.2 S5 Galois extension

Consider from section 2.4.2:

f(x, t) = x5 + tx+ t

Since 5 does not divide disc(f(x, t)) = t4(256t + 3125), 5 is unramified in K̂t/Q. In

addition, f(x, t) ≡ x5+x+1 ≡ (x+3)(x2+x+1)(x2+x+2) (mod 5), the Galois extensions

K̂t/Q satisfy the hypothesis of Theorem 1.4. Hence Artin L-functions L(s, ρ, t) =
ζKt (s)

ζ(s)

are cuspidal automorphic L-functions of GL(4)/Q.
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On the other hand, it is easy to check, for square-free t,

p is totally ramified in Kt ⇐⇒ p | t.

Hence Kt are not isomorphic for all square-free t and this fact implies that L(s, ρ, t) are

distinct. Hence we verified Assumption 4.5 for this case.

Let

L(A) =

{
X

2
< t < X | t : square-free and t ≡ iM (mod M)

}
Then we can see that (4.12) holds.

So Theorem 4.8 and Theorem 4.9 are valid.

4.7 Conditional result under zero density hypothesis

Until now, we obtained the average value of logarithmic derivatives of Artin L-functions in

a family. In this section, we assume a zero density hypothesis and evaluate the logarithmic

derivative of a single Artin L-function.

We use the same notation as in section 4.2: Let f(x, t) ∈ Z[t][x] be an irreducible

polynomial of degree n whose splitting field over Q(t) is a regular extension with Galois

group G. Let Kt, K̂t be as in section 4.2. Let L(s, ρ, t) =
∑∞

l=1 λ(l, t)l−s be the Artin

L-function
ζKt (s)

ζ(s)
. For simplicity of notation, let L(s, ρ) = L(s, ρ, t), λ(p) = λ(p, t), and

N = |dKt |.

If we assume the Artin conjecture and GRH for L(s, ρ), then by [16],

L′

L
(1, ρ) = −

∑
p≤(logN)2+ε

λ(p) log p

p
+On,x,α(1).

We show under certain zero hypothesis (Conjecture 4.19) that if w = (logN)(log logN)2,

x = (logN)2+ε, ∑
w<p<x

λ(p) log p

p
= O(1). (4.16)



Chapter 4. Logarithmic derivatives of Artin L-functions 78

Proof of (4.16): By partial summation,

∑
w<p<x

λ(p) log p

p
= − 1

w

∑
p<w

λ(p) log p+
1

x

∑
p<x

λ(p) log p+

∫ x

w

∑
p<u λ(p) log p

u2
du. (4.17)

Then 1
w

∑
p<w λ(p) log p = O(1), and 1

x

∑
p<x λ(p) log p = O(1) since

∑
p<x log p = O(x).

Let % = β + iγ run over the zeros of L(s, ρ) in the critical strip of height up to T ,

with 1 ≤ T ≤ u. Then by [32], page 112,

ψ(ρ, u) =
∑
n≤u

λ(n)Λ(n) = −
∑
|γ|≤T

u% − 1

%
+O(

u log u

T
log(un−1N)). (4.18)

Here ψ(ρ, u) =
∑

p≤u λ(p) log p +
∑

pk≤u, k≥2 λ(pk) log p. Since λ(l) ≤ dn−1(l), where

ζ(s)n−1 =
∑∞

l=1 dn−1(l)l−s and dn−1(l) ≤ d(l)n−1, λ(pk) ≤ (k + 1)n−1. Hence

∑
pk≤u, k≥2

λ(pk) log p�
∑
p≤
√
u

log p
∑

k< log u
log p

(k + 1)n−1 �
√
u(log u)n.

So this error term contributes to O(1) in the integral in (4.17). Therefore, we can use

ψ(ρ, u) in the integral in (4.17). We apply (4.18) with T = (logN)(log logN)2. The error

term O(u log u
T

log(un−1N)) gives rise to∫ x

w

(
(n− 1)

u(log u)2

(logN)(log logN)2
+

u log u

(log logN)2

)
du

u2
.

which is O(1).

The sum
∑
|γ|≤T

1
%

is bounded by (logN)
∑T

k=1
1
k
� logN log T and it gives rise to

(logN)(log T )

∫ x

w

du

u2
� logN log T

w
= O(1).

Now we assume the following zero density hypothesis for L(s, ρ). (cf. [55], page 6)

Conjecture 4.19. For u ≥ (log(n− 1) logN)κ, and κ ≥ 1

∑
|γ|≤T

u%

%
≤ u1− c

(log(n−1) logN)κ T
d

(log(n−1) logN)κ

for some positive constants c, d which are independent of L(s, ρ).
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Remark 4.20. Conjecture 4.19 follows from GRH if u is large. However, if u is small,

of size (logN)a which is under consideration, it does not follow from GRH.

If T = (logN)(log logN)2,

T
d

(log(n−1) logN)κ = O(1).

Let b = c
(log((n−1) logN)κ

, then under Conjecture 4.19,

∫ x

w

∑
|γ|≤T

u%

%

 du

u2
�
∫ x

w

u−1−b du� w−b = O(1).

Hence under the zero density hypothesis, we proved (4.16). �

Then since ∑
logN

log logN
≤p≤w

log p

p
� log log logN,

we have

L′

L
(1, ρ) = −

∑
cf≤p< logN

log logN

λ(p) log p

p
+O(log log logN). (4.21)

Since −1 ≤ λ(p) ≤ n− 1, we have

Theorem 4.22. Under the Artin conjecture and GRH and Conjecture 4.19 for L(s, ρ),

the upper and lower bound for L′

L
(1, ρ, t) are

log log |dKt |+O(log log log |dKt|), −(n− 1) log log |dKt |+O(log log log |dKt|),

resp.

For X > 0, let y = 1
100

logX and define M , iM , sM as in section 4.2. So for all

cf ≤ p ≤ y, if t ≡ sM (mod M), p splits completely in K̂t, and λ(p, t) = n− 1; if t ≡ iM

(mod M), λ(p, t) = −1. Assume that the discriminant of f(x, t) is a polynomial in t of

degree D. Then there is a constant C such that |dKt| ≤ CtD. So log |dKt | � log t. For

A = C1/DX, we define a set L(A)i by

L(A)i = {X
2
< t < X | t ≡ iM (mod M), Gal(K̂t/Q) ' G}.
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Similarly we define L(A)s. Note that for 1
2
X < t < X,

log |dKt |
log log |dKt |

≤ y = 1
100

logX

for sufficiently large X. Hence we can control λ(p) for cf ≤ p < logN
log logN

, namely, for

t ∈ L(A)s, λ(p) = n− 1; for t ∈ L(A)i, λ(p) = −1. Hence we have proved

Theorem 4.23. Under the Artin conjecture and GRH and Conjecture 4.19 for L(s, ρ, t),

for all t ∈ L(A)i,
L′

L
(1, ρ, t) = log log |dKt | + O(log log log |dKt|), and for all t ∈ L(A)s,

L′

L
(1, ρ, t) = −(n− 1) log log |dKt |+O(log log log |dKt |).

Let’s assume the strong Artin conjecture for L(s, ρ, t) instead of the Artin conjecture

and GRH. In addition we assume that Assumptions 4.4 and 4.5 are true. They by

applying Theorem 1.10 to L(A)s and L(A)i, we obtain sets L̂(A)s and L̂(A)i where

every automorphic L-function excluding possible exceptional O(A98/100) L-functions, has

a zero-free region [α, 1]× [−(log |dKt |)2, log |dKt |)2]. Then we can prove

Theorem 4.24. Under the strong Artin conjecture, Assumptions 4.4, 4.5 and Conjecture

4.19 for t ∈ L̂(A)s,
L′

L
(1, ρ, t) = −(n−1) log log |dKt |+O(log log log |dKt|). For t ∈ L̂(A)i,

L′

L
(1, ρ, t) = log log |dKt |+O(log log log |dKt |).



Chapter 5

A refinement of Weil’s Theorem

This chapter is written based on the joint work [10] with H. Kim. We follow [10] closely.

5.1 A refinement of Weil’s Theorem

First, let us recall Weil’s celebrated theorem on rational points of algebraic curves over

finite fields. ([58], page 75):

Theorem 5.1 (Weil). Let f(x, y) ∈ Fp[x, y] be absolutely irreducible and of total degree

d > 0. Let N be the number of zeros of f in Fp × Fp. Then

|N − p| ≤ (d− 1)(d− 2)
√
p+ c(d),

for a constant c(d).

Let ft(x) = xn + a1(t)xn−1 + · · ·+ an(t), where ai(t) ∈ Z[t]. Suppose ft is irreducible

over Q(t). Furthermore, we assume that the splitting field E of ft(x) over Q(t) is regular.

Let p be a prime and Nt(p) be the number of solutions ft(x) ≡ 0 (mod p), and let

λt(p) = Nt(p)− 1. Let G = Gal(K̂t/Q). Recall that

L(s, ρt) =
ζKt(s)

ζ(s)
=
∞∑
n=1

λt(n)n−s,

81
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and ρt is the (n − 1)-dimensional representation of G, and λt(p) is the value of the

character of ρt at the conjugacy class of p. Note that −1 ≤ λt(p) ≤ n− 1 for unramified

primes p.

Let Ai be the number of t (mod p) such that λt(p) = i, i.e., ft(x) ≡ 0 (mod p) has

i+ 1 roots. Then clearly,

N =
n−1∑
i=−1

(i+ 1)Ai +O(1).

When G is abelian, then Ai = 0 for i 6= −1, n− 1. So N = nAn−1 +O(1).

Theorem 5.2. Fix a prime p. Let Ci be the union of conjugacy classes such that λt(p) =

i. Then

Ai =
|Ci|
|G|

p+O(
√
p).

Proof. This is essentially Chebotarev density theorem for function field, and is proved

by Ree [54]. In [54], Theorem 2, it is stated only for when f(x, t) (mod p) is irreducible.

(He needs to assume that f(x, t) gives rise to a regular Galois extension E over Q(t).)

But it is straightforward to generalize it. We follow his exposition in [54]. Let k = Fp,

and K be the splitting field of f(x, t) over k(t). Since f(x, t) gives rise to a regular

Galois extension over Q(t), Gal(K/k(t)) ' Gal(E/Q(t)) for sufficiently large p. Let D

be the set of elements a ∈ k such that the place pa of k(t) corresponding to t − a does

not ramify in K. Then the conjugacy class Ca of the Frobenius at pa in K is the same

as factorization of f(x, a) (mod p). For any conjugacy class C in G, let Nn(C) be the

number of elements a ∈ D such that Ca = C. Then the density theorem of Weil says

that there exists a constant αn, depending only on n, such that∣∣∣∣Nn(C)− |C|
|G|

p

∣∣∣∣ < αn
√
p. (5.3)

Hence (5.3) implies our result.

Remark 5.4. Theorem 5.2 can be thought of a refinement of Theorem 5.1. Indeed,

Theorem 5.2 implies Theorem 5.1: By class equation,
∑n−1

i=−1 |Ci| = |G|, and so Theorem
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5.2 implies

n−1∑
i=−1

(i+ 1)Ai =
n−1∑
i=−1

(i+ 1)

(
|Ci|
|G|

p+O(
√
p)

)
=

p

|G|

n−1∑
i=−1

i|Ci|+
p

|G|

n−1∑
i=−1

|Ci|+O(
√
p).

Here
∑n−1

i=−1 i|Ci| = 0. We can prove this as follows: Note that χρt is the sum of irreducible

characters χ1, ..., χk, and

n−1∑
i=−1

i|Ci| =
∑
g∈G

χρt(g) =
k∑
j=1

∑
g∈G

χj(g).

By orthogonality of characters,
∑

g∈G χj(g) = 0 for each j = 1, ..., k. Therefore,
∑n−1

i=−1(i+

1)Ai = p+O(
√
p).

This implies that
∑n−1

i=−1 iAi = O(
√
p). This played a crucial role in the previous

chapter to find the error term of logarithmic derivatives of Artin L-functions in a family.

In the special case ft(x) = x2 − g(t), where g ∈ Z[t] and g is square free, we recover the

result of Davenport and Burgess [2] that
∑

t (mod p)(
g(t)
p

) = O(
√
p).

For the several cyclic polynomials, we determine Ai up to a constant in section 5.2.

5.2 Cyclic groups

In the case of cyclic extension, we need to determine only A−1 and An−1. In the case of

simplest cubic fields, Duke [17] already obtained the result. The simplest cubic fields are

the cubic fields parameterized by the polynomial

ft(x) = x3 − tx2 − (t+ 3)x− 1, for t ∈ Z+.

For a prime p ≥ 5, Duke computed the number of residue classes t modulo p for which

ft(x) splits completely, remains inert or ramifies respectively.

split inert ramified

p ≡ 1 mod 3 p−4
3

2p−2
3

2

p ≡ 2 mod 3 p−2
3

2p+2
3

0
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This can be paraphrased as

A−1 =
2p− 2

3
, and A2 =

p− 4

3
if p ≡ 1 mod 3

and

A−1 =
2p+ 2

3
, and A2 =

p− 2

3
if p ≡ 2 mod 3.

With Duke’s idea, we can extend the analogous result to simplest quartic and sextic

fields. The simplest quartic fields are the fields parameterized by

ft(x) = x4 − tx3 − 6x2 + tx+ 1

with the discriminant disc(ft(x)) = 4(t2 +16)3. Note that for odd primes p, disc(ft(x)) ≡

0 mod p has a solution if and only if p ≡ 1 mod 4.

We consider the polynomial ft(x) over a finite field Fp of p elements. Then

t =
x4 − 6x2 + 1

x(x2 − 1)

hence x should belong to Fp\{0,±1}.

If p ≡ 3 mod 4, disc(ft(x)) has no root mod p, Hence 4 × A3 = p − 3. Hence we

obtain that

A−1 =
3p+ 3

4
and A3 =

p− 3

4

for primes p with p ≡ 3 mod 4 and p ≥ 3.

If p ≡ 1 mod 4, disc(ft(x)) has two roots ±4
√
−1 mod p. For each t corresponding

a root of disc(ft(x)), ft(x) has at most 3 roots mod p, so there is a constant 0 ≤ cp ≤ 6

depending on p with 4 × A3 = p − 3 − cp. Since A3 is of integer value, cp is 2 or 6. For

example, we can check easily that c5 = 2. Hence we obtain that

A−1 =
3p− 5 + cp

4
and A3 =

p− 3− cp
4

for primes p with p ≡ 1 mod 4 and p ≥ 5.

Next, we consider the simplest sextic fields. They are parametrized by

ft(x) = x6 − 2tx5 − 5(t+ 3)x4 − 20x3 + 5tx2 + 2(t+ 3)x+ 1
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with the discriminant disc(ft(x)) = 2636(t2 + 3t + 9)5. Note that for odd prims p ≥ 5,

disc(ft(x)) ≡ 0 mod p has a solution if and only if p ≡ 1 mod 3.

We consider the polynomial ft(x) over a finite field Fp of p elements. Then

t =
x6 − 15x4 − 20x3 + 6x+ 1

x(x2 − 1)(2x+ 1)(x+ 2)

hence x should belong to Fp\{0,±1 − 2,−1/2}.

If p ≡ 2 mod 3, disc(ft(x)) has no root mod p, Hence 6 × A5 = p − 5. Hence we

obtain that

A−1 =
5p+ 5

6
and A5 =

p− 5

6

for primes p with p ≡ 2 mod 3 and p ≥ 5.

If p ≡ 1 mod 3, disc(ft(x)) has two roots −3±3
√
−3

2
mod p. For each t corresponding

a root of disc(ft(x)), ft(x) has at most 5 roots mod p, so there is a constant 0 ≤ cp ≤ 10

with 6× A5 = p− 5− cp. Since A5 is of integer value, cp must be 2 or 8. Especially we

can check that c7 = 2. Hence we obtain that

A−1 =
5p− 7 + cp

6
and A3 =

p− 5− cp
6

for primes p with p ≡ 1 mod 3 and p ≥ 7.



Chapter 6

Simple zeros of Maass L-functions

6.1 Introduction

Many people have had an interest in zeros of various kinds of L-functions. One of the

most famous open question is the Riemann Hypothesis. In 1942 Selberg [61] proved that

a positive proportion of zeros lie on the critical line re(s) = 1/2. Levinson [44] showed

that more than one third of the zeros are on the critical line. Heath-Brown [26] was

the first man who showed that the Riemann zeta function has infinitely simple zeros by

observing the work of Levinson. Montgomery [46], assuming the Riemann Hypothesis,

showed that more than two thirds of the zeros are simple and lie on the critical line.

Unconditionally, Conrey [15] showed that more than two fifths of zeros are simple and

lie on the critical line.

In 1983 Hafner [23] showed that L-functions attached to Hecke cusp form for SL(2,Z)

has a positive proportion of zeros with odd multiplicity on the critical line. Later he [24]

obtained the same conclusion for the L-functions attached to even Maass forms.

Except the case of the Riemann zeta function, people did not know about simple zeros

of L-functions. In 1986, Conrey, Ghosh and Gonek [13] showed that the zeta function

of a quadratic field has infinitely many simple zeros. In 1988, Conrey and Ghosh [14]

86
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got a breakthrough about simple zeros of modular L-functions. They showed that the

L-function attached to Ramanujan tau-function has infinitely many simple zeros. In fact,

they showed that one simple zero of a Heck cusp L-function implies infinitely many simple

zeros if it has no non-trivial real zero.

The purpose of this article is to extend Conrey and Ghosh [14] to Maass L-functions.

First, we recall a Maass form and its L-function briefly.

Let Γ = PSL(2,Z) act on the upper half-plane H = {z : Imz > 0} by linear

fractional transformations. The Maass cusp forms which are also eigenfunctions of the

Hecke operators is functions f in L2(Γ\H) satisyfing

(1) ∆f = (1
4

+ r2)f,∆ = −y2(∂2
x + ∂2

y),

(2) f(γz) = f(z) for all γ ∈ Γ,

(3)
∫ 1

0
f(z)dx = 0,

(4) Tnf = λnf for n ≥ 1

where Tn is the nth Hecke operator for Γ.

Then we have the Fourier-Whittaker expansion of f(z),

f(z) =
∞∑
n6=0

any
1/2Kir(2πny)e2πinx.

Since f is an eigenfunction of the Tn’s, it follows that if we normalize a1 = 1, then

an = λn ,which is real, and

anam =
∑
d|(n,m)

anm/d2 .

The L-function attached to f is defined by

Lf (s) =
∞∑
n=1

ann
−s.

and it satisfies the functional equation

Λf (s) := π−sΓ

(
s+ ε+ ir

2

)
Γ

(
s+ ε− ir

2

)
Lf (s) = (−1)εΛf (1− s)

where ε = 0 if f is even and ε = −1 if f is odd.
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Strömbergsson [68] found simple zeros of three different L-functions attached to even

Maass forms on SL(2,Z). He considered three even Hecke eigenforms corresponding to

r = 13.779751351891, 17.738563381058 and 125.313840177018. He showed that there are

156, 157 and 170 nontrivial zeros under height t = 200 in the three respective cases. The

zeros are all found to be simple and to lie on the critical line Re(s) = 1/2. We will show

that at least these three Maass L-functions have infinitely many simple zeros.

Throughout this article, we assume that our Maass form is even except in section

6.5. This is because a minor modification of the proof is required when the form is odd.

Another reason is that Strömbergsson [68] found simple zeros of even Maass L-function.

In section 5, we explain about the difference when the form is odd in detail.

We imitate Conrey and Ghosh [14] and Booker [3]. In case of Conrey and Ghosh

[14], the gamma factor of a Hecke modular L-function consists of one gamma function.

On the other hand, the gamma factor of a Maass L-function is the product of 2 gamma

functions, that is H(s) = π−sΓ
(
s+ir

2

)
Γ
(
s+ir

2

)
.

Via Stirling’s formula, we can see

π−sΓ

(
s+ ir

2

)
Γ

(
s− ir

2

)
(s− 1/2)

=
√

8π(2π)−sΓ (s+ 1/2) + b(2π)−sΓ (s− 1/2) + (2π)−sΓ (s− 1/2)E(1,r)(s)

where b is some constant constants and E(1,r)(s) is holomorphic and O(1/s) in Re(s) > 1.

First we consider the difference of two integrals,

1

2πi

∫
(1+ε)

L′

L
(1− s)L

′

L
(s)H(s)L(s)(s− 1/2)ei(π/2−δ)sds

− 1

2πi

∫
(−ε)

L′

L
(1− s)L

′

L
(s)H(s)L(s)(s− 1/2)ei(π/2−δ)sds

And this equals, by the functional equation ,

1

2πi

∫
(1+ε)

L′

L
(1− s)L

′

L
(s)H(s)L(s)(s− 1/2)f(s, δ)ds (6.1)
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where f(s, δ) = ei(π/2−δ)s+ei(π/2−δ)(1−s). The integral is ,via Cauchy’s theorem, expressed

as the following sum over zeros together with O(1) term.

−
∑

0<re(ρ)<1

L′(ρ)H(ρ)(ρ− 1/2)ei(π/2−δ)ρ +O(1)

where O(1) is contributed by trivial zeros 1± ir of L(1−s) and simple poles ±ir of H(s).

We show that, in Section 6.2, this integral is very large if there is a simple zero of

L(s). This implies the infinity of the number of simple zeros of a Maass L-function.

6.2 Estimates of integrals

DefineX(s) be H(1−s)
H(s)

. Then we have an asymmetric functional equation L(s) = X(s)L(1−

s). If we replace H(s) by the above linear combination of Gamma functions, the integral

(6.1) equals

−
∫

(1+ε)

L′

L
(s)L′(s)(2π)−sG1(s)f(s, δ)ds+

∫
(1+ε)

X ′

X
(s)L′(s)(2π)−sG1(s)f(s, δ)ds (6.2)

where G1(s) =
(√

8πΓ (s+ 1/2) + bΓ (s− 1/2) + Γ (s− 1/2)E(1,r)(s)
)
.

We divide (6.2) into 4 integrals. We estimate the value of each integral. For this

purpose, we need the following Lemma.

Lemma 6.3. Suppose that

F (s) =
∞∑
n=1

f(n)

ns

where the sum is absolutely convergent for σ > σ0 > 0 and 0 < δ < π/2.

Then for l > σ0 and l + c > 0,

1

2πi

∫
(l)

F (s)(2π)−sΓ (s+ c) ei(π/2−δ)±sds

=
1

2πi

∫
(l)

F (s)(2π)−sΓ (s+ c) (2 sin(δ/2))−s−c
(
e±iδ/2

)−s+c
(∓i)cds.

Proof. The proof is almost identical with the proof of Lemma 1 in Conrey and Ghosh

[14] or Lemma 2 in Booker [3]. For the sake of completeness, we re-write the proof. First

recall that zce−z =
∫
l
Γ(z + c)z−s for re(z) > 0 and l + c > 0.
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The integral equals

=
∞∑
n=1

f(n)
1

2πi

∫
(l)

Γ(s+ c)
(
∓2πine±iδ

)−s
ds

=
∞∑
n=1

f(n)(∓2πine±iδ)ce±2πni(e±iδ−1)

=
∞∑
n=1

f(n)(∓2πine±iδ)ce−2πn(2 sin(δ/2))e±iδ/2

= (∓i)c(2 sin(δ/2))−c(e±iδ/2)c
∞∑
n=1

f(n)(2πn(2 sin(δ/2))e±iδ/2)ce−2πn(2 sin(δ/2))e±iδ/2

= (∓i)c(2 sin(δ/2))−c(e±iδ/2)c

×
∞∑
n=1

1

2πi

∫
(l)

f(n)n−sΓ(s+ c)(2π)−s(e±iδ/2)−s(2 sin(δ/2))−sds

which equals the right hand side.

Let’s consider the following integral.

1

2πi

∫
(1+ε)

L′

L
(s)L′(s)(2π)−sΓ (s+ 1/2) f(s, δ)ds.

By Lemma 6.3, this integral is equal to

1

2πi

∫
(1+ε)

L′

L
(s)L′(s)(2π)−sΓ (s+ 1/2) (2 sin(δ/2))−(s+1/2)g(s, δ)ds

where g(s, δ) =
[(
eiδ/2

)−s+1/2
(−i)1/2 + ei(π/2−δ)

(
e−iδ/2

)−s+1/2
(i)1/2

]
.

Let’s assume that L(s) has a simple zero ρ = β+it for 0 < β < 1. From the functional

equation H(s)L(s) = H(1 − s)L(1 − s), we may assume that β ≥ 1/2. Since zeros of

g(s, δ) are 3
2
− 2π(n+1)

δ
for n ∈ Z, the integrand has a simple pole at s = β + it.

Lemma 6.4 (Booker [3]). Let ψ(s) be meromorphic in the complex plane, and holomor-

phic for σ > σ0 and of rapid decay in vertical strips in a right hand plane. If ψ(s) has a

pole at s = β + it, then for l > σ0

1

2πi

∫
(l)

ψ(s)x−sds = Ωε

(
x−(β−ε)) as x→ 0

for all ε > 0.
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Hence by Lemma 6.4,

1

2πi

∫
(1+ε)

L′

L
(s)L′(s)(2π)−sΓ (s+ 1/2) f(s, δ)ds = Ωε

(
δ−(β+1/2−ε))

as δ → 0.

Let’s consider the integral

1

2πi

∫
(1+ε)

L′

L
(s)L′(s)(2π)−s

(
bΓ (s− 1/2) + Γ (s− 1/2)E(1,r)(s)

)
f(s, δ)ds

The value of this integral is dominated by the value of the integral

1

2πi

∫
(1+ε)

L′

L
(s)L′(s)(2π)−sΓ (s− 1/2) ei(π/2−δ)(−s)ds

and this integral is equal to, by Lemma 6.3,

1

2πi

∫
(1+ε)

L′

L
(s)L′(s)(2π)−sΓ (s− 1/2) (2 sin(δ/2))−(s−1/2)

(
e−iδ/2

)−s−1/2
(i)−1/2ds

Then, the value of this integral is O
((

1
δ

)1/2+ε
)

.

Nextly, let’s consider the integral

1

2πi

∫
(1+ε)

X ′

X
(s)L′(s)(2π)−s

(
bΓ (s− 1/2) + Γ (s− 1/2)E(1,r)(s)

)
f(s, δ)ds

which is dominated by

1

2πi

∫
(1+ε)

X ′

X
(s)L′(s)(2π)−sΓ (s− 1/2) ei(π/2−δ)(−s)ds

.

If shift the contour of the integral to 1/2 + ε, then

1

2πi

∫
(1+ε)

X ′

X
(s)L′(s)(2π)−sΓ (s− 1/2) ei(π/2−δ)(−s)ds

=
1

2πi

∫
(1/2+ε)

X ′

X
(s)L′(s)(2π)−sΓ (s− 1/2) ei(π/2−δ)(−s)ds+O(1).

Meurman [45] showed that L(1/2+it)�ε t
1/3+ε. Hence the integrand isO

(
|t|5/6+ε−1e−δ|t|

)
and this integral is O

(
(1/δ)5/6+ε

)
.

Lastly, the remaining integral is
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1

2πi

∫
(1+ε)

X ′

X
(s)L′(s)(2π)−sΓ (s+ 1/2) f(s, δ)ds (♦)

The estimate of the integral (♦) is the most difficult part. In section 6.3, we show

Lemma 6.5.

1

2πi

∫
(1+ε)

X ′

X
(s)L′(s)(2π)−sΓ (s+ 1/2) f(s, δ)ds�

(
1

δ

)5/6+ε

for any ε > 0.

Our estimates of the 4 integrals show that

1

2πi

∫
(1+ε)

L′

L
(1− s)L

′

L
(s)H(s)L(s)(s− 1/2)f(s, δ)ds = Ωε

(
1

δ

)β+1/2−ε

as δ → 0.

6.3 An estimate of the integral (♦)

Recall that H(s) = π−sΓ
(
s+ir

2

)
Γ
(
s−ir

2

)
. By Stirling’s formula, we have

H(s) = (2π)−sΓ

(
s− 1

2

)
E(2,r)(s)

where E(2,r)(s) is holomorphic in the complex plane except when s = ±ir − 2n for

n = 0, 1, 2, · · · and E(2,r)(s) =
√

8π +O(1/s).

Then

X(s) =
H(1− s)
H(s)

= (2π)2s−1 Γ(1/2− s)E(2,r)(1− s)
Γ(s− 1/2)E(2,r)(s)

= (2π)2s−1 Γ(3/2− s)(s− 1/2)E(2,r)(1− s)
Γ(s+ 1/2)(1/2− s)E(2,r)(s)

= −(2π)2s−1 Γ(3/2− s)E(2,r)(1− s)
Γ(s+ 1/2)E(2,r)(s)

.

Hence we have,

X ′(s)

X(s)
= 2 log 2π − Γ′

Γ
(3/2− s)− Γ′

Γ
(s+ 1/2)−

E ′(2,r)
E(2,r)

(1− s)−
E ′(2,r)
E(2,r)

(s).
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Since Γ′

Γ
(z) = log z − 1

2z
+ O(1/z2), it is easy to see that

E′
(2,r)

E(2,r)
(s) = O(1/s). Then,

the contribution of
E′

(2,r)

E(2,r)
(1− s) +

E′
(2,r)

E(2,r)
(s) to the integral (♦) is O

(
(1/δ)5/6+ε

)
when we

move the contour of integral from c = 1 + ε to c = 1/2.

We plug in the remaining part of X′(s)
X(s)

into the integral (♦), we have

∫
(1+ε)

L′(s)G2(s)f(s, δ)ds

where G2(s) = 2 log 2πΓ(s+ 1/2)− Γ′

Γ
(3/2− s)Γ(s+ 1/2)− Γ′(s+ 1/2).

By Lemma 6.3,∫
(1+ε)

L′(s)(2π)−sΓ(s+ 1/2)ei(π/2−1/2)sds

=

∫
(1+ε)

L′(s)(2π)−sΓ(s+ 1/2)(2 sin(δ/2))−s−1/2
(
eiδ/2

)−s+1/2
(−i)1/2ds

=

∫
(ε)

L′(s)(2π)−sΓ(s+ 1/2)(2 sin(δ/2))−s−1/2
(
eiδ/2

)−s+1/2
(−i)1/2ds

= O
(
(1/δ)1/2+ε

)
Secondly,∫

(1+ε)

L′(s)(2π)−sΓ′(s+ 1/2)ei(π/2−1/2)sds

=

∫
(1+ε)

∞∑
n=1

b(n)

ns
log(−2πineiδ)(2π)−sΓ(s+ 1/2) (2 sin(δ/2))−s−1/2 (eiδ/2)−s ds

=

∫
(1+ε)

∞∑
n=1

b(n)(log(n) + log(−2πieiδ))

ns

×(2π)−sΓ(s+ 1/2) (2 sin(δ/2))−s−1/2 (eiδ/2)−s ds = O
(
(1/δ)1/2+ε

)
where L′(s) = −

∑∞
n=1 an log (n)n−s =

∑∞
n=1 b(n)n−s.

The remaining integral to estimate is∫
(1+ε)

L′(s)(2π)−s
Γ′

Γ
(3/2− s)Γ(s+ 1/2)ei(π/2−δ)sds.

For this purpose, we needs analogous lemmas of Lemma 2 and Lemma 3 in [14].

Lemma 6.6. Assume that |arg(z)| < π/2, then 1
2πi

∫
(1+ε)

Γ′

Γ
(3/2 − s)Γ(s + 1/2)z−s =

z1/2e−z
(

Γ′

Γ
(2)−

∫ 1

0
etz−1
t

(1− t)dt
)
.
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Proof. Γ(s+1/2) has a simple pole at s = −1/2−n for n = 0, 1, 2, · · · with residue (−1)n

n!
.

Hence the integral equals

=
∞∑
n=0

(−1)nz1/2+n

n!

Γ′

Γ
(2 + n)

Since sΓ(s) = Γ(s+ 1), we have

Γ′

Γ
(2 + n) = Γ′

Γ
(2) +

∑n−1
l=0

1
l+2

= Γ′

Γ
(2) +

∫ 1

0
t (1−tn)

(1−t) dt.

Then the integral is equal to

= Γ′

Γ
(2)z1/2e−z + z1/2

∑∞
n=0

(−1)nzn

n!

∫ 1

0
t (1−tn)

(1−t) dt

= Γ′

Γ
(2)z1/2e−z + z1/2

∫ 1

0
t

1−t(e
−z − e−zt)dt

and when we change t by 1− t, we obtain the right hand side.

Lemma 6.7. Suppose v ≥ 1/2. Define

ω(v, δ) =
1

2πi

∫
(1+ε)

Γ′

Γ
(3/2− s)Γ(s+ 1/2)(2π)−sv−sei(π/2−δ)sds.

Then

ω(v, δ)� v1/2

(
e−x log

1

δ
+ min{1, 1

x2
}
)

where x = 2πv sin δ. Moreover, we have

ω(v + 1/2, δ) + ω(v, δ)� e−x
(
δ log

1

δ
+

1

v1/2
log

1

δ

)
+ δmin{1, 1

x2
}+

1

v1/2
min{1, 1

x
}.

Proof. Since the process of the proof is identical with Lemma 3 in [14], we skip some

detail and refer to [14].

By Lemma 6.6, ω(v, δ) = z1/2e−z
(

Γ′

Γ
(2)−

∫ 1

0
etz−1
t

(1− t)dt
)

= e−zG(z) where z =

−2πvieiδ = 2πv sin δ − 2πi cos δ = x− iy.

Since
∫ 1

0
etz−1
t

(1− t)dt� log |z|
x

+ exmin{1, x−2}, the first statement follows.

Next, ω(v + 1/2, δ) + ω(v, δ) = e−(z+η)(G(z + η)−G(z)) +G(z)(e−z + e−(z+η)) where

η = −πieiδ. We have

e−(z+η) + e−z � e−x|e−eta + 1| = e−x|1− eπi(e2iδ−1)| � δe−x.
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Also we have

G(z + η)−G(z) =
√
z + η

(
−
∫ 1

0

et(z+η) − etz

t
(1− t)dt

)
+(
√
z + η −

√
z)

(
Γ′

Γ
(2)−

∫ 1

0

(etz − 1)(1− t)
t

dt

)
� |z|1/2 1

|z|
exmin{1, x−1}+

1

|z|1/2

(
log

1

δ
+ exmin{1, x−2}

)
.

Then the second statement follows.

Now we are ready to estimate the integral

F (δ) =
∫

(1+ε)
L′(s)(2π)−s Γ′

Γ
(3/2− s)Γ(s+ 1/2)ei(π/2−δ)sds = −

∑∞
n=1 an log nω(n, δ).

By Proposition 1.1 in [21] and partial summation, we have

Lemma 6.8. Let Sm =
∑m

n=1 an log n. Then Sm � m1/3+ε.

We notice that by Lemma 6.7,

ω(n+ 1, δ)− ω(n, δ) = (ω(n+ 1, δ) + ω(n+ 1/2, δ))− (ω(n+ 1/2, δ) + ω(n, δ))

�
(
e−(nδ)

(
δ log

1

δ
+

1

n1/2
log

1

δ

)
+ δmin{1, 1

(nδ)2
}+

1

n1/2
min{1, 1

nδ
}
)

Since by Lemma 6.7 and Lemma 6.8, Snω(n+ 1, δ)→ 0 as n→∞ and the series

∞∑
n=1

Sn(ω(n+ 1, δ)− ω(n, δ))

converges absolutely. Hence we rewrite F (δ) as

F (δ) = −
∞∑
n=1

Sn(ω(n+ 1, δ)− ω(n, δ)).

Finally, we have, by Lemma 6.8,

F (δ)�
∞∑
n=1

n1/3+ε|ω(n+ 1, δ)− ω(n, δ)|

�
∞∑
n=1

n1/3+ε

(
e−nδ

(
δ log

1

δ
+

1

n1/2
log

1

δ

)
+ δmin{1, 1

(nδ)2
}+

1

n1/2
min{1, 1

nδ
}
)

� δ

(
log

1

δ

)(
1

δ

)4/3+ε

+

(
log

1

δ

)(
1

δ

)5/6+ε

+

(
1

δ

)1/3+ε

+

(
1

δ

)5/6+ε

�
(

1

δ

)5/6+2ε

.

Hence Lemma 6.5 follows.
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6.4 Main Theorem and its Corollary

Now we state the main Theorem and its Corollary.

Theorem 6.9. Let L(s) is the L-function attached to a Maass Hecke eigenform on

SL(2,Z) and we assume that L(s) has a simple zero ρ = β+it for 0 < β < 1. Then, there

is an arbitrary large T so that L(s) has �ε T
1/6−ε simple zeros in the region 0 < t < T .

Corollary 6.10. There are at least three L-functions attached to even Maass Hecke

eigenforms for SL(2,Z) which have infinitely many simple zeros.

Meurman [45] showed that L(1/2 + it)�ε t
1/3+ε. By Pharagmen-Lindelöf argument,

we have

|L(σ + it)| �ε |t|−2/3σ+2/3+ε

for 1
2
≤ σ ≤ 1.

Now let β0 = sup{β|ρ = β + it is a simple zero of L(s)}.

Let’s return to our original sum

∑
0<re(ρ)<1

L′(ρ)H(ρ)(ρ− 1/2)ei(π/2−δ)ρ +O(1)

For any ε > 0, we have H(s)L′(s) �ε e
−π

2
|t||t| 13σ− 1

3
+ε. Let 1

δ
= T and for sufficiently

large T , the sum is

�ε

∑
|t|<T,ρ=β+it simple

T
1
3
β0+ 2

3
+ε

By the calculation in Section 6.2, there is an arbitrary large T for which this sum is

�ε T
β0+ 1

2
−ε. Hence we finish the proof.

6.5 In case of an odd Maass form

When a Maass form is odd, we need some modifications in our arguments.
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We consider the integral

1

2πi

∫
(1+ε)

L′

L
(1− s)L′(s)H(s)(s− 1/2)2(ei(π/2−δ)s − ei(π/2−δ)(1−s))ds

where H(s) = π−sΓ
(
s−1+ir

2

)
Γ
(
s−1−ir

2

)
. Via Stirling’s formula, we also see

π−sΓ

(
s− 1 + ir

2

)
Γ

(
s− 1− ir

2

)
(s− 1/2)2

=
√

8π(2π)−sΓ(s+1/2)+b1(2π)−sΓ(s−1/2)+b2(2π)−sΓ(s−3/2)+(2π)−sΓ(s−3/2)E(1,r)(s)

where b1, b2 are some constants and E(1,r)(s) is holomorphic and O(1/s) in Re(s) > 1.

Define X(s) = H(1−s)
H(s)

. Then X(s) equals

(2π)2s−1 Γ(−1/2− s)E(2,r)(1− s)
Γ(s− 3/2)E(2,r)(s)

= (2π)2s−1 Γ(3/2− s)(s− 3/2)E(2,r)(1− s)
Γ(s+ 1/2)(s+ 1/2)E(2,r)(s)

.

Then, we have

X ′

X
(s) = 2 log 2π − Γ′

Γ
(3/2− s)− Γ′

Γ
(1/2 + s)

+
1

s− 3/2
− 1

s− 1/2
−
E ′(2,r)
E(2,r)

(1− s)−
E ′(2,r)
E(2,r)

(s).

Except these differences, all calculations work similarly as in the case of an even

Maass form.
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Appendix

7.1 Proof of Proposition 3.16

This proposition is a linear sieve problem and it is well-known, at least, to those familiar

with sieve method. However, for the sake of completeness, we provide the proof of

Proposition 3.16. We refer to Halberstam and Richert [25] for unexplained notations.

Let A be a finite sequence of integers. The for a square-free integer d, we define

Ad := {a | a ∈ A, a ≡ 0 mod d}.

Let X be a convenient approximation to | A |. For example, we put X = Li(x) =∫ x
2

dt
ln t

for | A |= π(x). For each prime p, we choose ω0(p) so that ω0(p)
p
X approximates

to | Ap |.

and write the remainders as

rp :=| Ap | −
ω0(p)

p
X for all p.

With these choices of X and ω0(p), we define, for each square-free integer d,

ω0(1) := 1, ω0(d) =
∏
p|d

ω0(p).
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so that ω0(d) is a multiplicative function. Then we introduce for each square-free integer

d,

rd :=| Ad | −
ω0(d)

d
X.

Let P = {p} be a set of primes and P denotes the complement of P with respect to

the set of all primes. After our choice of P, we define

ω(p) =

 ω0(p), p ∈ P

0, p ∈ P.

and it is extended to the set of all square-free integers by

ω(1) := 1, ω(d) =
∏
p|d

ω(p).

Correspondingly we introduce for a square-free integer d,

Rd :=| Ad | −
ω(d)

d
X.

With the new function ω we form the product

W (z) :=
∏
p<z

(
1− ω(p)

p

)
.

Theorems in sieve method are formulated subject to certain basic conditions and they

are expressed as symbols. We need to introduce some conditions and their symbols nec-

essary for our purpose. Here A0, A1, A2 and L are some constants bigger than or equal to

1 and k is a positive constant. Especially, if k = 1, then the corresponding sieve problem

is called a linear sieve.

(Ω0) ω(p) ≤ A0 for all p.

(Ω1) 0 ≤ ω(p)

p
≤ 1− 1

A1

for all p.

(R) |Rd| ≤ ω(d) if µ(d) 6= 0, (d,P) = 1.

(Ω2(k))
∑
w≤p<z

ω(p) log p

p
≤ k log

z

w
+ A2 if 2 ≤ w ≤ z.
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(Ω2(k, L)) −L ≤
∑
w≤p<z

ω(p) log p

p
− k log

z

w
≤ A2 if 2 ≤ w ≤ z.

Then, our main interest is evaluating the sifting function

S(A;P, z) :=| {a | a ∈ A, (a, P (z)) = 1} | .

We quote a lower bound theorem of a linear sieve necessary to prove Proposition 3.16.

Theorem 7.1 (Halberstam and Richert). (Ω1),(Ω2(1, L)) : For ξ ≥ z, we have

S(A;P, z) ≥ XW (z)

{
f

(
log ξ2

log z

)
−B L

(log ξ)1/14

}
−

∑
d<ξ2,d|P (z)

3ν(d) | Rd |

where f(u) is a positive function for u > 2 and monotonically increasing toward 1, ν(d)

is the number of distinct prime divisors of d and B is a positive constant.

For given positive integer l of the size of xu with 0 < u ≤ 0.3, let define a finite set A

to be

A = {0 < n < x | n ≡ b mod l}

for any co-prime integers b to l. Put P = {p | p : prime and p - l} and z = x1/3+ε for

some ε > 0. If n ∈ A and (n, P (z)) = 1, then the number of prime divisors of n is at

most 2. Hence we have

S(A;P, z) +O(
√
x) ≤| {0 < n < x | n : square-free, n ≡ b mod l, ν(n) ≤ 2} | .

It is easy to check that ω(p) = 1 if p ∈ P. Hence our sieve problem satisfies Ω1

condition with A1 = 2.

(Ω1) 0 ≤ ω(p)

p
≤ 1− 1

A1

for all p.

Since, for 2 ≤ w ≤ z,

∑
w≤p<z

ω(p) log p

p
=
∑
w≤p<z

log p

p
−

∑
w≤p<z,p|l

log p

p
= log

z

w
+Ol(1),

our sieve problem satisfies (Ω2(1, L)). So we can apply Theorem 7.1 to our problem. We

choose X to be x
l

= x1−u and we have W (z) =
∏
p<z(1− 1

p)l
φ(l)

. Now we put ξ2 = x1−u−δ

log4 z
.
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Then, for large x and very small ε and δ,

log ξ2

log z
=

(1− u− δ) log x− 4(log log x+ log(1/3 + ε))

(1/3 + ε) log x
> 2.

Since, for x ≥ 2 we have

∏
p≤x

(
1− 1

p

)
=

e−γ

log x

(
1 +O

(
1

log x

))
with Euler constant γ, we obtain the main term of Proposition 3.16.

Now we should show that the error term is smaller than the main term. We have

that | Rd |≤ ω(d) ≤ 1 for all square-free d and especially Rd = 0 if d is not co-prime to

l. Then, ∑
d<ξ2,d|P (z)

3v(d) | Rd |≤
∑

d<ξ2,d|P (z)

3v(d)ω(d) ≤ ξ2
∑
d|P (z)

3v(d)ω(d)

d

≤ ξ2
∏
p|P (z)

(
1 +

ω(p)

p

)3

≤ ξ2

W 3(z)
≤ ξ2W (z) log4 z

where in the last inequality we used the fact that 1
W (z)

= O(log z) under (Ω1) and (Ω2(1))

conditions. By choice of ξ2, the error term is ignorable compared with the main term.

Since there are at most x1/2 squares in A, we finish the proof.
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