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Abstract. In the seminal papers [6, 7], Koblitz curves were proposed for

cryptographic use. For fast operations on these curves, these papers also initi-
ated a study of the radix-τ expansion of integers in the number fields Q(

√
−3)

and Q(
√
−7). The (window) nonadjacent form of τ -expansion of integers in

Q(
√
−7) was first investigated in [11]. For integers in Q(

√
−3), the nonadja-

cent form and the window nonadjacent form of the τ -expansion were studied

in [7, 3]. These are used for efficient point multiplications on Koblitz curves.
In this paper, we complete the picture by producing the (window) nonadjacent

radix-τ expansions for integers in all Euclidean imaginary quadratic number

fields. A wider range of applications is expected.

1. Introduction

In many applications, it is convenient to express an integer n in a binary form

n =
t∑

i=0

bi2i, bi ∈ {0, 1}.

The window nonadjacent form (NAF) generalizes the binary expansion and is used
to speed up elliptic curve point multiplication. In this form, given a positive integer
w, every integer n can be represented as

n =
t∑

i=0

bi2i,

with
(1) bi ∈ {−2w−1 + 1,−2w−1 + 3, · · · ,−1, 1, · · · , 2w−1 − 3, 2w−1 − 1} ∪ {0}, for

each i = 0, 1, · · · , t, and
(2) any segment of coefficients {bi, bi+1, . . . , bi+w−1} contains at most one nonzero

element.
This is called the nonadjacent from with window width w, see [1, 5, 9].

In his seminal paper [6], Koblitz proposed the use of curves

y2 + xy = x3 + ax2 + 1,

over F2m in cryptography, where a = 0 or 1. For fast computation on such curves,
Koblitz also considered the base-τ expansion of elements in the ring Z[τ ] with

τ =
1 +
√
−7

2
. The celebrated window τ NAF method for Z[τ ] was proposed by
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Solinas [11] which improves the point multiplication on these curves dramatically.
By this method, each a + bτ ∈ Z[τ ] can be written as

a + bτ =
s∑

i=1

biτ
i,

where
(1) each nonzero coefficient bi is an element with the least norm in the ( mod

τw ) class of some odd number r satisfying |r| < 2w−1,
(2) any segment of coefficients {bi, bi+1, . . . , bi+w−1} contains at most one nonzero

element.
In [2], we defined a “wider” window τ NAF, and proved its existence.

In [7], Koblitz introduced another family of elliptic curves, this family being
defined over F3m :

y2 = x3 − x− (−1)a

with a = 0 or 1, and applied them to digital signatures. It is noticed that these
curves are also useful in the ID-based cryptosystem, see [4]. The fast point multi-
plications on these curves using (non-adjacent) base-τ expansion of elements in the

ring Z[τ ] with τ =
3 +
√
−3

2
was also suggested in [7]. The more general window τ

NAF in this case was discussed in [3], and greater efficiency was achieved.

In this paper, the results mentioned above are extended to all Euclidean imag-
inary quadratic number fields. More specifically, let R be the ring of integers of
such a field, and fix a nonunit, nonzero element τ ∈ R with the least norm. It is
proved that for any integer w > 2, a suitable finite set C ⊂ R can be chosen so that
every element r ∈ R can be uniquely written as

r =
t∑

i=0

ciτ
i, (1.1)

and
(1) ci ∈ C for i = 0, 1, . . . , t;
(2) any segment of coefficients {ci, ci+1, . . . , ci+w−1} contains at most one nonzero

element.
Equation (1.1) is the so called radix-τ width w NAF (nonadjacent form) for r.

For the cases that w = 2, we still have the desired radix-τ width 2 NAF and the
uniqueness hold for fields Q(

√
−7), Q(

√
−3) and Q(

√
−11). In fact, for Q(

√
−3)

the existence and uniqueness of radix-τ (width 2) NAF for Q(
√
−3) is a theorem

of Koblitz, see[7].

The case of w = 1 is also of particular interest. In this case equation (1.1) is
simply the usual radix-τ form of the integer r. Our results show that every integer
in R has a radix-τ form with coefficients taken from the set of units. The form is
aslo shown to be unique for the field Q(

√
−11). It is noted for the field Q(

√
−7),

the radix-τ form was first considered by Koblitz in [6].
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We first develop criteria for the divisibility of (algebraic) integers by a power of
τ and these, in turn, will be used to characterize the class of integers modulo τw.
The set C of coefficients of the above representation will then be easily determined.

This is a problem of independent interest, but it is obviously useful in the fast
point multiplication for a large family of CM-curves where τ corresponds to an en-
domorphism that is efficiently computable. We can derive algorithms for obtaining
radix-τ width w NAF for any integer.

The termination of our methods relies on the norm reducing property and the
fact that the ring of integers contains finitely many units. The ring of integers of a
Euclidean imaginary quadratic field satisfies these requirements.

It is noted that the minimality of the norm of τ is not necessary. As we can see
in the discussion, the results are easier to establish for τ with bigger norm.

There are five Euclidean imaginary quadratic number fields:

Q(
√
−1), Q(

√
−2), Q(

√
−3), Q(

√
−7), Q(

√
−11),

and their corresponding rings of integers are

Z[
√
−1], Z[

√
−2], Z

[
1 +
√
−3

2

]
, Z

[
1 +
√
−7

2

]
, Z

[
1 +
√
−11

2

]
. (1.2)

Without loss of generality, we fix a nonunit, nonzero τ with the least norm for each
ring:

Ring of integers Z[
√
−1] Z[

√
−2] Z

[
1 +
√
−3

2

]
Z

[
1 +
√
−7

2

]
Z

[
1 +
√
−11

2

]
τ 1 +

√
−1

√
−2

3 +
√
−3

2
1 +
√
−7

2
1 +
√
−11

2

The organization of this paper is as follows. In §2, the divisibility of elements
by a power of τ is discussed for each of the rings listed in (1.2). The existence and
uniqueness of the radix-τ NAF for these rings of integers is given in §3. In §4, two
algorithms are presented for obtaining the radix-τ NAF for integers in Q(

√
−1) and

Q(
√
−11). An example of fast arithmetic on some Koblitz curves using the radix-τ

NAF is also included. The last section contains some comments and a summary of
the paper.

Throughout this paper, for a real number x, we denote by bxc the largest integer
less than or equal to x, and dxe the smallest integer greater than or equal to x.

2. Divisibility by a power of τ

In this section, the problem of τk|a + bτ is considered. It is translated to prop-
erties in terms of a and b and operations in Z. This provides an easier way to
determine the congruence classes modulo τw.

The first three results are for the rings Z[
√
−1], Z[

√
−2] and Z[ 1+

√
−3

2 ], and they
are similar in pattern.
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Lemma 2.1. Let τ = 1 +
√
−1. If k is a positive integer and a + bτ ∈ Z[τ ](=

Z[
√
−1]), then
(1)

τk = 2b
k
2 c exp

(bk
2 cπ
√
−1

2

)
τ d

k
2 e−b

k
2 c

(2)
τk|a + bτ ⇐⇒ 2d

k
2 e|a and 2b

k
2 c|b.

Proof. (1) This follows since τ =
√

2 exp
(π

4
√
−1

)
.

(2) Since exp
(bk

2 cπ
√
−1

2

)
is a unit in Z[τ ], τk is associated to 2b

k
2 cτ d

k
2 e−b

k
2 c.

The argument then follows from the facts that
• if k is even,

a + bτ = 2b
k
2 c

(
a

2d
k
2 e

+
b

2b
k
2 c

τ

)
;

• if k is odd,

a + bτ = 2b
k
2 cτ

(
a + b

2b
k
2 c

+
−a

2d
k
2 e

τ

)
.

�

Lemma 2.2. Let τ =
√
−2. If k is a positive integer and a + bτ ∈ Z[τ ], then

τk|a + bτ ⇐⇒ 2d
k
2 e|a and 2b

k
2 c|b.

Proof. The proof is straightforward and is omitted. �

Lemma 2.3. Let τ = 3+
√
−3

2 . If k is a positive integer and a + bτ ∈ Z[τ ](=

Z[
1 +
√
−3

2
]), then

(1)

τk = 3b
k
2 c exp

(bk
2 cπ
√
−1

3

)
τ d

k
2 e−b

k
2 c

(2)
τk|a + bτ ⇐⇒ 3d

k
2 e|a and 3b

k
2 c|b.

Proof. Similar to the proof of lemma 2.1. Also see [3]. �

For the rings Z[
1 +
√
−7

2
] and Z[

1 +
√
−11

2
], another approach has to be devel-

oped. We start with some facts in p-adic analysis.

Let p be a prime in Z and m an integer such that p 6 |m. Consider a quadratic
polynomial

f(x) = x2 + mx + p.

Let a0 = 0, then f(a0) ≡ 0 mod p, f ′(a0) 6≡ 0 mod p. Using the Hensel procedure,
one finds aj with 0 ≤ aj < p, j = 1, 2, . . . , k − 1, such that the integer

tk = a0 + a1p + a2p
2 + · · ·+ ak−1p

k−1,
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satisfies
f(tk) ≡ 0 mod pk. (2.1)

The tk is called the kth p-adic approximation of a zero of f(x).
The coefficient ak−1 can be obtained through (see [8, 10])

ak−1m +
f(tk−1)
pk−1

≡ 0 mod p. (2.2)

Since p|tk−1, (2.2) is equivalent to

(m + tk−1)(tk−1 + ak−1p
k−1) + p ≡ 0 mod pk.

Therefore, one gets the following relation

tk ≡ −(m + tk−1)−1p mod pk (2.3)

Theorem 2.1. Let p be a prime in Z, m an integer which is not divisible by p. Let
α be a root of

x2 + mx + p = 0.

Then for any positive integer k,

αk|a + bα in Z[α] ⇐⇒ a + btk ≡ 0 mod pk.

Proof. We proceed by induction. It is obvious that this is a true statement when
k = 1, i.e.,

α|a + bα in Z[α] ⇐⇒ p|a.

Let k > 1. Assume that the statement is true for each integer less than k. It
suffices to consider the case that p|a. Observe that

a + bα

α
=

(
b− ma

p

)
+

(
−a

p

)
α.

So

αk|a + bα in Z[α] ⇐⇒ αk−1|
(

b− ma

p

)
+

(
−a

p

)
α in Z[α]

⇐⇒ b− ma

p
− a

p
tk−1 ≡ 0 mod pk−1

⇐⇒ bp− am− atk−1 ≡ 0 mod pk

⇐⇒ a + b(m + tk−1)−1(−p) ≡ 0 mod pk

⇐⇒ a + btk ≡ 0 mod pk.

�

Since τ = 1+
√
−7

2 is a root of the equation

x2 − x + 2 = 0,

applying theorem 2.1, one gets immediately:

Lemma 2.4. Let τ =
1 +
√
−7

2
and k a positive integer. Let tk be the kth 2-adic

approximation of τ . Then for a + bτ ∈ Z[τ ],

τk|a + bτ ⇐⇒ a + btk ≡ 0 mod 2k.
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Remark 2.1. The above lemma is due to Solinas [11], but the proof there uses
Lucas sequences instead of 2-adic analysis.

Similarly we get the next lemma by considering a root of

x2 − x + 3 = 0.

Lemma 2.5. Let τ =
1 +
√
−11

2
and k a positive integer. Let tk be the kth 3-adic

approximation of τ . Then for a + bτ ∈ Z[τ ],

τk|a + bτ ⇐⇒ a + btk ≡ 0 mod 3k.

3. Window radix-τ expansion

We begin with a general discussion and come back to each of the individual fields
later.

Let F be a Euclidean imaginary quadratic number field and OF be the ring of
integers of F . For k ∈ F , as an element of C, the norm of k denoted by N(k), is
simply the product of k with its complex conjugate. In particular, the norm of a
nonzero element is positive.

Let α ∈ OF and N(α) > 1. Let C ⊂ OF and w be a positive integer. An element
k ∈ OF is said to have a radix-α width w NAF (nonadjacent form) with respect to
C if

k =
n∑

i=0

uiα
i,

where
(1) for each i = 0, 1, . . . , n, ui ∈ C;
(2) any w consecutive coefficients ui, ui+1, · · · , ui+w−1 contains at most one

nonzero element.
We will call a radix-α width 1 NAF a radix-α form.

Now suppose N(αw) ≥ 12. Let

R = {k ∈ OF : α 6 |k}.

Let C1, C2, . . . , Ct be the congruence classes of R modulo αw. It is noted that
all units of OF are in R and no class Ci contains more than two units. For each
1 ≤ i ≤ t, if Ci contains a unit, then denote it by ci. If Ci does not contain a
unit, fix an element ci of Ci with N(ci) < N(αw) (this can be done since the ring
is Euclidean). Set

C = {c1, c2, . . . , ct} ∪ {0}. (3.1)

The first result of this section is general.

Theorem 3.1. Every element k ∈ OF has a unique radix-α width w NAF with
respect to C defined by (3.1).

Proof. Existence: We prove the existence by induction on the norm.
As F is an imaginary quadratic field, elements of norm 1 are necessarily units,

and so they are in C already hence have the width w NAF.
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Let m be a positive integer. Assume that all elements of norm less than m have
the width w NAF. Let k ∈ OF and N(k) = m.

There are q ∈ OF and ci0 ∈ C such that

k = qαw + ci0 .

It suffices to show that q has a width w NAF. This is true since N(q) < N(k). In
fact, N(k) > 1 implies that |k| ≥

√
2. So

|q|
|k|

=
|k − ci0 |
|α|w|k|

≤ 1
|α|w

+
1
|k|

≤ 1
2
√

3
+

1√
2

< 1.

Uniqueness: Suppose that k ∈ OF has two width w NAFs with coefficients in C,

k =
n∑

i=1

uiα
i + u0

=
n′∑

i=1

viα
i + v0.

We may assume that u0 6= 0. This means that α 6 |k, so v0 6= 0. These force that
u1 = · · · = uw−1 = 0 and v1 = · · · = vw−1 = 0. Therefore u0 and v0 are in the same
class modulo αw and hence they are equal.

The rest follows from a standard induction argument.
�

It is remarked that the uniqueness of the width w NAF is based on the fact that
no distinct coefficients can be in the same class modulo αw. More on this will be
seen in the discussion that follows.

Theorem 3.1 can be refined further for each specific Euclidean imaginary qua-
dratic number field.

Gaussian Integers
In this case, let τ = 1+

√
−1 and consider the radix-τ window NAF for elements

in Z[
√
−1](= Z[τ ]).

By lemma 2.1, we can get a simple description of the congruence relation modulo
τw. Consider the elements of Z[τ ] that are not divisible by τ . Then the set of
representatives of the classes is

R = {x + yτ : 0 ≤ x ≤ 2d
w
2 e − 1, 0 ≤ y ≤ . . . , 2b

w
2 c − 1 and 2 6 |x}.

Let w ≥ 3. The units of Z[
√
−1] are 1,−1(≡ 2d

w
2 e− 1 mod τw),

√
−1(≡ (2d

w
2 e−

1)+τ mod τw) and −
√
−1(≡ 1+(2b

w
2 c−1)τ mod τw). They belong to four different
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classes modulo τw. We choose, for each x + yτ ∈ R, one element x̃ + ỹτ from the
class of x + yτ such that

N(x̃ + ỹτ) < N(τw) = 2w.

The coefficients of width w NAF consists of zero, units and other x̃ + ỹτ ’s which
are not divisible by τ . To be more specific, the set of coefficients is:

C = {0, 1,−1,
√
−1,−

√
−1} ∪ {x̃ + ỹτ : x + yτ ∈ R,N(x̃ + ỹτ) > 1}. (3.2)

Theorem 3.2. If w > 2, then every element a + bτ ∈ Z[τ ] has a unique width w
NAF with respect to C defined by (3.2).

Proof. If w > 3, then N(τw) > 12 and it becomes a special case of theorem 3.1.
If w = 3. According to the proof of theorem 3.1, we only need to show that if

k ∈ Z[
√
−1] \ C, and if for some q ∈ Z[

√
−1], c ∈ C,

k = qτ3 + c

implies that N(q) < N(k).
If N(k) = 2, then k is associated to τ , and the result follows. Otherwise since

Z[
√
−1] contains no elements of norm 3, so N(k) ≥ 4. Thus

|q|
|k|

=
|k − c|
|τ |3|k|

≤ 1
2

3
2

+
1
|k|

< 1.

Since N(τ3) = 8, distinct units can not be in the same (mod τ3) class. This
also means that distinct elements in C can not be in the same class. Thus the
uniqueness follows. �

Theorem 3.2 can not be generalized to the cases of w ≤ 2. For example, take
w = 2. If we choose one element from each class of modulo τ2 = 2

√
−1, then the

set of coefficients would be something like C = {0, 1,
√
−1}. But we claim that −1

can not have a radix-τ width 2 NAF with respect to such C. If there were width 2
NAF of -1

−1 =
n∑

i=0

uiτ
i,

then we would have u0 = 1, u1 = 0, u2 =
√
−1, u3 = 0, u4 =

√
−1, · · · , and n would

not be finite.

If we can take more than one element from each class modulo τw, width w NAF
can be still produced, even though not necessarily unique. The main ideas of the
proof follow along the same lines as that of theorem 3.1 and theorem 3.2, and so
will be omitted.

Theorem 3.3. (1) Every element a + bτ ∈ Z[τ ] has a radix-τ width 2 NAF
with respect to C = {0, 1,−1,

√
−1,−

√
−1}.

(2) Every element a + bτ ∈ Z[τ ] has a radix-τ form with respect to C =
{0, 1,−1}.

Proof. (1) The main ideas of the proof of the result can be traced from that of
theorem 3.1 and theorem 3.2. The detail will be omitted.
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(2) In this part, induction will be used on the norm. Consider a general term
a + bτ ∈ Z[τ ].

If N(a + bτ) ≤ 1, then the argument is true. In fact, when a + bτ /∈
{0, 1,−1}, a + bτ = ±

√
−1 = ±(τ − 1).

Otherwise, there are several cases to consider.
If a is even, then a + bτ is divisible by τ and the argument is reduced to

a + bτ

τ
whose norm is smaller.

If a is odd, then (a± 1) + bτ is divisible by τ . Notice that

N((a± 1) + bτ)−N(a + bτ) = 1± 2(a + b).

Without loss of generality, we may assume that a + b ≥ 0. Thus

N((a− 1) + bτ)−N(a + bτ) ≤ 1.

This implies that

N(
(a− 1) + bτ

τ
) < N(a + bτ)

since N(a + bτ) > 1. So
(a− 1) + bτ

τ
has a radix-τ form with respect to

{0, 1,−1}.
Therefore

a + bτ =
(

(a− 1) + bτ

τ

)
τ + 1,

has a radix-τ form.
�

As an example, we see that 3 = −τ4 − 1 = −
√
−1τ2 + 1, so the radix-τ width 2

NAF in the above theorem is not unique.
A counterexample to the uniqueness of part 2 of the above theorem is τ4 + 1 =

τ3 − τ − 1.

Integers in Q(
√
−2)

Let τ =
√
−2. By lemma 2.2, the set of representatives of the classes of elements

not divisible by τ can be

R = {x + yτ : 0 ≤ x ≤ 2d
w
2 e − 1, 0 ≤ y ≤ . . . , 2b

w
2 c − 1 and 2 6 |x}.

Similar to the previous argument, for each x + yτ ∈ R, choose x̃ + ỹτ from the
class of x + yτ such that

N(x̃ + ỹτ) < N(τw) = 2w.

Set
C = {0, 1,−1} ∪ {x̃ + ỹτ : x + yτ ∈ R,N(x̃ + ỹτ) > 1}. (3.3)

Theorem 3.4. If w > 2, then every element a + bτ ∈ Z[τ ] has a unique width w
NAF with respect to C defined by (3.3).

Proof. As in the proof of theorem 3.2, we only consider the case of w = 3.
Let k ∈ Z[

√
−2] and N(k) > 1.

If N(k) = 2, then k is associated to τ .
If N(k) = 3, then k ∈ {1+τ, 1−τ,−1+τ,−1−τ}. Notice that 1+τ ≡ 1−τ mod τ3

and −1 + τ ≡ −1− τ mod τ3.
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It can be checked that there is no other element in the class of 1 + τ with norm
less than N(τ3) = 8, so one of 1 + τ and 1 − τ must be in C. Without loss of
generality we may assume that 1 + τ ∈ C. Then

1− τ = (1 + τ) + τ3.

A similar discussion applies to −1 + τ and −1− τ .
If N(k) ≥ 4, then the proof is similar to that of theorem 3.2. �

Since −1 does have a width 2 NAF with respect to {0, 1}, theorem 3.4 can not
be generalized to cases of w ≤ 2. But we can relax the set of coefficients to get the
following theorem.

Theorem 3.5. (1) Every element a+bτ ∈ Z[
√
−2] has a radix-τ width 2 NAF

with respect to C = {0, 1,−1, 1 + τ}.
(2) Every element a + bτ ∈ Z[

√
−2] has a radix-τ form with respect to C =

{0, 1,−1}.

We omit the proof as its ideas can be found in the proofs of previous results.

Noticed that 3 = τ4 − 1 = −τ2 + 1, and we see that the forms satisfying theo-
rem 3.5 are not unique.

Eisenstein Integers

Let τ =
3 +
√
−3

2
, and set

R = {x + yτ : 0 ≤ x ≤ 3d
w
2 e − 1, 0 ≤ y ≤ 3b

w
2 c − 1 and 3 6 |x},

then R consists of the representatives of the (mod τw) classes of those elements not
divisible by τ . Once again, we take x̃ + ỹτ to be an element in the class of x + yτ
with norm less then N(τw) = 3w.

Note that the set of units of Z[τ ] is U6 = {ω ∈ C : ω6 = 1}.
Let

C = {0} ∪ U6 ∪ {x̃ + ỹτ : x + yτ ∈ R,N(x̃ + ỹτ) > 1}. (3.4)
The next theorem generalizes a theorem of Koblitz[6] from w = 2 to any w > 1

and its existence part was first established in [3]. For the uniqueness part, we need
to notice that any two distinct coefficients are not congruent modulo τw.

Theorem 3.6. If w > 1, then every element a + bτ ∈ Z[τ ] has a unique width w
NAF with respect to C defined by (3.4).

In [3], we have already showed that 2 − τ can not have a radix-τ form with
respect to {0, 1,−1}. But we have the following

Theorem 3.7. Every element a + bτ ∈ Z[τ ] has a radix-τ form with respect to
{0} ∪ U6.

Integers in Q(
√
−7)

Let τ =
1 +
√
−7

2
and w a positive integer. By lemma 2.4, the (mod τw) classes

of elements not divisible by τ can be represented by 1, 3, . . . , 2w − 1.. The units of
Z[τ ] are 1 and -1.
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Let ci ≡ i and N(ci) < N(τw) = 2w. Set

C = {0, 1,−1} ∪ {ci : 1 < i < 2w − 1}. (3.5)

The next theorem generalizes results of Solinas [11] and its existence part was
established in [2].

Theorem 3.8. If w > 1, then every element a + bτ ∈ Z[τ ] has a unique width w
NAF with respect to C defined by (3.5).

We can verify that −1 does not have a radix-τ form with respect to {0, 1}. But
the following theorem of Koblitz [6] gives the radix-τ form for every integer in
Q(
√
−7) with -1 added to the coefficient set.

Theorem 3.9. (Koblitz) Every element a + bτ ∈ Z[τ ] has a radix-τ form with
respect to C = {0, 1,−1}.

Notice that τ − 1 = τ2 + 1, so the radix-τ form is not unique.

Integers in Q(
√
−11)

Let τ =
1 +
√
−11

2
and w a positive integer. There are only two units in Z[τ ]:

1, -1. They are not congruent modulo τw.
Let tw be the wth 3-adic approximation of τ defined in section 2, then 3|tw. By

lemma 2.5, 1, 2, 4, 5, . . . , 3w−1 are representatives of classes modulo τw of elements
in Z[τ ] which are not divisible by τ .

Let ci ≡ i mod τw and N(ci) < N(τw) = 3w. Set

C = {0, 1,−1} ∪ {ci : 1 < i < 3w − 1 and 3 6 |i}. (3.6)

Theorem 3.10. Let w be any positive integer, then every element a + bτ ∈ Z[τ ]
has a unique width w NAF with respect to C defined by (3.6).

Proof. If w > 2, then the theorem follows from theorem 3.1. If w = 2, consider
an element k ∈ Z[τ ] with N(k) > 1. Since Z[τ ] contains no element of norm 2, so
N(k) ≥ 3. We will show that if

k = qτ2 + c

for some q ∈ Z[τ ] and c ∈ C, then N(q) < N(k) and the induction applies. In fact

|q|
|k|

=
|k − c|
|α|2|k|

≤ 1
|α|2

+
1
|k|

< 1.

Next we consider the case of w = 1. In this case, C = {0, 1,−1}. If 1 < N(k) < 9,
then it is easily checked that k ∈ {±(1− τ),±(−τ2 + τ − 1),±(1+ τ),±(−τ2− 1)}.

If N(k) ≥ 9, write
k = qτ + c

with q ∈ Z[τ ] and c ∈ C, then similar to the argument before, we have N(q) < N(k).
The result follows by induction.

Finally the uniqueness for the cases of w ≤ 2 is due to the fact that no two
elements in C are in the same class modulo τw.

�

The next table summarizes the results of this section.
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Fields τ Radix τ Uniqueness of
width w NAF width w NAF

Q(
√
−1) 1 +

√
−1 Yes w > 2

Q(
√
−2)

√
−2 Yes w > 2

Q(
√
−3)

3 +
√
−3

2
Yes w > 1

Q(
√
−7)

1 +
√
−7

2
Yes w > 1

Q(
√
−11)

1 +
√
−11

2
Yes all w

4. Algorithms and Applications

In the first part of this section, two algorithms for computing the width w NAF
of integers in Q(

√
−1) and Q(

√
−11) are presented. Other cases are similar. One

can actually find much of the corresponding algorithms for integers in Q(
√
−7) in

[11] and integers in Q(
√
−3) in [7, 3].

In the second part of this section, some Koblitz curves over F5m are proposed.
The width w NAF in Q(

√
−11) will be used in the fast point multiplication on

those curves.

Algorithms

The first algorithm concerns width w NAF of Gaussian integers. In this case,
τ = 1 +

√
−1.

Let w be a positive integer. If w ≥ 3, then the four units ±1,±
√
−1 belong to

different classes modulo τw. The representatives of the (mod τw) classes of elements
not divisible by τ are

x + yτ : x = 1, 3, . . . , 2d
w
2 e − 1, y = 0, 1, 2, . . . , 2b

w
2 c − 1. (4.1)

If we take, for each x + yτ in (4.1), one element x̂ + ŷτ from the class of x + yτ
with the least norm and set

C = {x̂ + ŷτ ;x + yτ as in (4.1)},
then C contains ±1,±

√
−1. If w < 3, set

C = {1,−1,
√
−1,−

√
−1}.

The next algorithm provides an efficient way of producing radix-τ width w NAF
for any element in Z[

√
−1] with nonzero coefficients in C.

Algorithm 4.1. (Radix -τ width w NAF Method)
INPUT: an element ρ = r0 + r1τ of Z[

√
−1]

OUTPUT: S, the array of coefficients of width w NAF for ρ.

S ←<>
While N(r0 + r1τ) ≥ 1
If 2 6 |r0 then

x← r0 mod 2d
w
2 e

y ← r1 mod 2b
w
2 c

r0 ← r0 − x̂
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r1 ← r1 − ŷ
prepend x̂ + ŷτ to S

Else
prepend 0 to S

Endif
t← r0

r0 ← r0 + r1

r1 ←
−t

2
Endwhile
If r0 = 0 and r1 = 0 then

prepend r0 + r1τ to S
Endif

Return S

It is noted that when w = 1 the above algorithm outputs radix-τ form with
respect to {0, 1,−1,

√
−1,−

√
−1}. One can easily formulate an algorithm for the

radix-τ form of a Gaussian integer with respect to {0, 1,−1} based on the proof of
part 2 of theorem 3.3.

The second algorithm considers the width w NAF for integers in Q(
√
−11). In

this case, τ =
1 +
√
−11

2
.

Let w be a positive integer and tw the wth p-adic approximation of τ . We list
the first eight tws in the next table.

w 1 2 3 4 5 6 7 8
tw 0 3 12 66 228 228 1686 1686

Recall that lemma 2.5 claims that for a + bτ ∈ Z[τ ],

τw|a + bτ ⇐⇒ a + btw ≡ 0 mod 3w,

therefore 1, 2, 4, 5, . . . , 3w − 1 are representatives of classes modulo τw of elements
not divisible by τ .

For each i such that 1 ≤ i < 3w and 3 6 |i, let ai + biτ be an element in the ( mod
τw ) class of i with the least norm, and set

C = {ai + biτ : 1 ≤ i < 3w and 3 6 |i}.
It is noted that the units of Z[τ ] are ±1 and they are both in C.

An algorithm that outputs radix-τ width w NAF for any integer in Q(
√
−11)

with nonzero coefficients in C is as follows:

Algorithm 4.2. (Radix -τ width w NAF Method)
INPUT: an element ρ = r0 + r1τ of Z

[
1+

√
−11

2

]
OUTPUT: S, the array of coefficients of width w NAF for ρ.

S ←<>
While r0 6= 0 or r1 6= 0
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If 3 6 |r0 then
u← r0 + r1tw mod 3w

r0 ← r0 − au

r1 ← r1 − bu

prepend au + buτ to S
Else

prepend 0 to S
Endif
t← r0

3
r0 ← t + r1

r1 ← −t
Endwhile

Return S

Applications
The radix-τ width w NAFs in Q(

√
−3) and Q(

√
−7) have been used in the

efficient point multiplications of two families of Koblitz curves, namely

K(2, a,m) : y2 + xy = x3 + ax2 + 1/F2m , where a ∈ {0, 1},

and
K(3, a,m) : y2 = x3 − x− (−1)a/F3m , where a ∈ {0, 1}.

See [6, 7, 11, 2, 3].
Here we give an example of using radix-τ width w NAF in Q(

√
−11) to the point

multiplication of the following Koblitz curves

K1(5, a,m) : y2 = x3 + x− (−1)a/F5m , where a ∈ {0, 1},

and
K2(5, a,m) : y2 = x3 − x− (−1)a2/F5m , where a ∈ {0, 1}.

For simplicity, we consider the family of curves

K2(5, 1,m) : y2 = x3 − x + 2/F5m .

Firstly, it is noted that the Frobenius map

τ : K2(5, 1, 1)→ K2(5, 1, 1)
(x, y) 7→ (x5, y5)

extends to K2(5, 1,m) for any m > 1. The characteristic polynomial of τ is

X2 − 3X + 5.

Therefore τ is identified as 3+
√
−11

2 . Also note that the operation of τ can be
efficiently implemented.

Secondly, in practice the number m should be chosen so that #K2(5, 1,m) is a
product of a small number and a large prime. As the number #K2(5, 1,m) can
be easily computed using the zeta function, it is checked that #K2(5, 1,m) = 3pm

where pm is a prime number, for m = 167, 227, 311.
Finally, for any P ∈ K2(5, 1,m) and positive integer n, an efficient computation

of the point mulitplication nP can be outlined as the follows:
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(1) Compute a+ bτ such that n ≡ a+ bτ (mod τm−1). Since (τm−1)P = O,
we have nP = (a + bτ)P .

(2) Since N(τw) = 5w > 12 if w > 1, by theorem 3.1, a + bτ has a width w
radix-τ NAF:

a + bτ =
s∑

i=0

ciτ
ki ,

with ci ∈ C and ki − ki−1 ≥ w, where C is given by (3.1).
(3) Precompute Qc = cP for each c ∈ C.
(4) The point multiplication nP is then

(a + bτ)P = τk1(τk2−k1(· · · (τks−ks−1Qcs
+ Qcs−1) + · · ·+ Qc1) + Qc0 .

5. Conclusion

In this paper, the radix-τ width w NAF is established for every integer in a Eu-
clidean imaginary quadratic number field. These forms are unique provided w > 2
(in some fields, this can be true even w = 2 or 1). Algorithms for computing these
forms are presented, and applications to efficient computation of point multiplica-
tion on some Koblitz curves are exemplified. This is a continuation and completion
of the work of Koblitz [6, 7], Solinas [11] and ours [2, 3].
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