Assignment 2

1. Explain this joke:

http://xkcd.com/1153/

(Hints: (1) look up the "arrow paradox"; (2) place the mouse cursor on the picture.)

- 2. Use quantifiers (\forall, \exists) , without negations, to give a formal definition of what it means for
 - a) A sequence (x_n) to diverge
 - b) A series $\sum_{n=0}^{\infty}$ to converge
- 3. Prove directly from your definition that the series $\sum_{n=0}^{\infty} 2^n$ diverges.
- 4. Prove that if $\sum_{n=0}^{\infty} x_n$ converges then $x_n \to 0$. Is the converse true?
- 5. Prove that if the series $\sum_{n=0}^{\infty} x_n$ is absolutely convergent, then it converges.
- 6. Let \sim be a binary relation that satisfies the following two properties.
 - (1) for all x, y, z, if $x \sim z$ and $y \sim z$ then $x \sim y$.
 - (2) for all x, we have $x \sim x$.

Prove that \sim is an equivalence relation.