# University of Toronto Mississauga <br> MAT392H5S: Ideas of Mathematics, Winter 2019 <br> <br> Second essay 

 <br> <br> Second essay}

## Due dates.

- Your essay topic is due by Tuesday February 26th.
- Be ready to write one paragraph about the topic of your essay as an in-class assignment on Thursday February 28th.
- Oral presentations will take place in the second half of March.
- Submit a complete draft in good shape on Thursday March 7. Prepare 9-12 pages (counting references, not counting diagrams and graphics). Use LATEX. Submit three hard copies (of only the PDF, preferably double-sided) in class, and submit the LATEX and PDF files on UTORsubmit.
- Submit the final version on Monday April 1st. Submit one hard copy (preferably doublesided) in the tutorial, and submit the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ and PDF files on UTORsubmit.


## Topic/partner.

- You can write the essay on your own or with a partner, but not with the same partner as for the first essay. Partners receive the same mark.
- A list of suggested topics is linked from the course website. With your partner, register in one slot on the doodle poll that is linked from the course website.
- Authors with the same topic will coordinate or combine their presentations. At most two essays can be on the same topic.


## Bibliography.

- Choose sources that contain enough mathematical content at a reasonably accessible level.
- Use at least two and no more than eight sources that have been published in print - books or articles, no theses.
- At most two of your sources can be Wikipedia pages, of your choice. You may not use other online courses. (Wikipedia can be useful for finding published sources.)
- Exceptions are allowed only with the instructor's permission.
- Record every source; see the examples on the LaTeX samplefile on the course website. If you use graphics from the web, cite the source in a footnote.


## The essay.

- Your audience is your fellow students.
- Use your own voice. Make several iterations of thinking, rewriting in your own words, reorganizing. Stand behind what you write.
- These topics are wide. Try to grasp some of the big picture. Include some important aspects of the topic. Include a helpful example.
- Explain (some of) the mathematics, don't just tell about it. Include some rigorous math content: a bit of logical reasoning; a precise definition/statement/example that is relevant. Also include some informal discussion of background/context/history/importance.
- You will encounter vocabulary that you don't understand. When you do, identify it, and use it cautiously. You must stand behind what you write.
- Your mathematics will be marked according to the following criteria: clarity; correctness; depth; logic.
- Your writing will be marked according to the following criteria: clarity; voice; overall structure; grammar; sources and documentation; typesetting and LaTeX.


## MAT392, Winter 2019 Essay 2 - suggested topics and references

Note: you do not have to choose one of the topics listed below, and if you do, you do not have to cover the particular material suggested by the references.

- Mathematics in the Animal World
- S. M. Henson and J. L. Hayward, "The Mathematics of Animal Behaviour: an Interdisciplinary Dialogue", Notices of the Amer. Math. Soc. 57 no. 10 (2010), p. 1248-1258, and works cited.
- The above is only one of many possible themes. See also: symmetries in nature (honeycombs, seashells...), modeling flocks of birds and other collective behaviours, etc.
- Mathematics in Art
- Hermann Weyl, "Symmetry", in "The World of Mathematics" (Ed.: J. R. Newman).
- "Math and Art", chapter in "The Princeton Companion to Mathematics" (Ed.: Gowers), and works cited.
- Huntley, "The Divine Proportion".
- "Artful Mathematics: The Heritage of M. C. Escher", Notices of the Amer. Math. Soc. 50 no. 4 (2003), p. 446-451, and works cited.
- Classical Mechanics
- Goldstein, "Classical Mechanics".
- The Feynman Lectures on Physics, Volume 1. Available online.
- Two Dimensional Crystallography ("Wallpaper Groups")
- Coxeter, "Introduction to Geometry" (2nd edition).
- Branko Grunbaum, "Tilings and patterns".
- Conway, Burgiel, and Goodman-Strauss, "The Symmetries of Things".
- Coxeter and Moser, "Generators and relations for discrete groups", 1957.
- Mathematical Finance
- Robert Almgren, "Financial derivatives and partial differential equations", Amer. Math. Monthly 109 no. 1 (2002), p. 1-12.
- Martin Baxter and Andrew Rennie, "Financial Calculus: An Introduction to Derivative Pricing".
- Samuel A. Broverman, "Mathematics of investment and credit".
- Knot Theory
- Colin Adams, "The Knot Book".
- De Witt Sumners, "Lifting the Curtain: using topology to probe the hidden action of enzymes", Notices Amer. Math. Soc. 42 no. 5 (1995), p. 528-537, and works cited.
- Mathematics in Linguistics
- Frederic Mosteller and David L. Wallace, "Deciding authorship", in "Mathematics: People, Problems, Results" Volume III (Ed.: D. M. Campbell and J. C. Higgins), p. 164-172.
- Barbra Partee, Alice ter Meulen, an Robert E. Wall, "Mathematics methods in linguistics".
- Keith Devlin, "Patterns of Language" in "Mathematics, the Science of Patterns: the search for order in life, mind, and the universe", 1994, p.65-71.
- Mathematics in Medicine
- J.W. Cain, "Taking Math to Heart: Mathematical Challenges in Cardiac Electrophysiology", Notices Amer. Math. Soc. 58 no. 4 (2011), p. 542-549.
- J.P. Keener and J. Sneyd, "Mathematical Physiology", Springer-Verlag, New York, 1998.
- Mathematics in Music
- Article by Henri Matin in "Mathematics: People, Problems, Results" (Ed.: D. M. Campbell and J. C. Higgins), 1984.
- Catherine Nolan, "Mathematics in Music", in "The Princeton Companion to Mathematics", (Ed.: Gowers), 2008.
- Article by Sir James Jeans in of "The World of Mathematics" Volume IV (Ed.: J. R. Newman).
- Origami
- David Auckly and John Cleveland, "Totally real origami and impossible paper folding", American Mathematical Monthly, 102 no. 3 (1995), p. 215-226.
- Thomas Hull, "A note on impossible paper folding", American Mathematical Monthly, 103 no. 3 (1996), p. 240-241.
- E. Demaine and J. O'Rourke, "Geometric Folding Algorithms: Linkages, Origami, Polyhedra", Cambridge, 2007.
- Population Dynamics
- Britton, "Essential Mathematical Biology".
- Textbooks on Ordinary Differential Equations, and mathematical modeling in Biology or Ecology.
- Rainbows
- Tricker, "Introduction to Meteorolical Optics", Elsevier, 1970.
- Nussenzveig, "The theory of the rainbow", Scientific American, 1977.
- Rubik's Cube
- David Joyner, "Adventures in Group theory".
- Donald E. Knuth, "Efficient representation of permutation groups", "Combinatorica" 11 no. 1 (1991), p. 33-43. (This is a more abstract description of the relevant algorithm, and might not address individual puzzles.)
- Mathematics in Sports
- Rob Eastaway and John Haigh, "How to take a penalty" - see the appendix.
- Sadovskii and Sadovskii, "Mathematics and sports".
- Gallian (Ed.), "Mathematics and Sports", Mathematical Association of America.
- Gould, "Mathematics in games, sports, and gambling".
- Townend, "Mathematics in Sports".
- Winston, "Mathletics", Princeton University Press, 2009.

Warning: this is not as easy a topic as it might appear! It is not enough to present calculations. You need to include mathematical content above the level of arithmetic.

- Traffic flow
- Barbara Keyfitz, "Hold that light! Modeling of traffic flow by differential equations". Available online.
- Wavelets
- Ingrid Daubechies, "Ten Lectures on Wavelets".
- Other (Option 1, with instructor permission). Consider applications of mathematics in another field of study. For example:
- Chemistry (spectroscopy, molecular structure, ...)
- Computer Science (algorithm design and optimization, cryptography, ...)
- Economics (game theory and decision-making, modeling the financial market, ...)
- Physics (electrodynamics, quantum mechanics, statistical mechanics, ...)
- Something else?
- Other (Option 2, with instructor permission). Choose another mathematical object, theorem, or field of study, and describe some of its applications. For example:
- Analytic Geometry
- Functions of a Complex Variable
- Ordinary Differential Equations
- Vector Calculus
- You can choose a topic from the list of "What is..." topics, so long as it is not the same one you used for the first essay.

