FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS: FROM
ALEXANDER TO KASHIWARA AND VERGNE

DROR BAR-NATAN AND ZSUZSANNA DANCSO

Abstract.  w-Knots, and more generally, w-knotted objects (w-braids, w-angles, etc.)
make a class of knotted objects which is wder but weaker than their \u sual" counterparts.
To get (say) w-knots from u-knots, one has to allow non-planar \virtual" knot diagrams,
hence enlarging the the base set of knots. But then one imposes &w relation, the \over-
crossings commute” relation, further beyond the ordinary collecton of Reidemeister moves,
making w-knotted objects a bit weaker once again.

The group of w-braids was studied (under the name \velded braids") by Fenn, Rimanyi
and Rourke [FRR] and was shown to be isomorphic to the McCool groupNic] of \basis-
conjugating” automorphisms of a free groupF, | the smallest subgroup of Aut( F,) that
contains both braids and permutations. Brendle and Hatcher BH], in work that traces back
to Goldsmith [Gol], have shown this group to be a group of movies of ying rings inR3.
Satoh [Sq studied several classes of w-knotted objects (under the namev eakly-virtual™)
and has shown them to be closely related to certain classes of kneitl surfaces inR*. So
w-knotted objects are algebraically and topologically interesting.

In this article we study nite type invariants of several classes of wknotted objects.
Following Berceanu and Papadima BP], we construct homomorphic universal nite type
invariants of w-braids and of w-tangles. We nd that the universal nite type invariant of
w-knots is more or less the Alexander polynomial (details inside).

Much as the spacesA of chord diagrams for ordinary knotted objects are related to
metrized Lie algebras, we nd that the spacesA" of \arrow diagrams" for w-knotted objects
are related to not-necessarily-metrized Lie algebras. Many quegtns concerning w-knotted
objects turn out to be equivalent to questions about Lie algebras.Most notably we nd that
a homomorphic universal nite type invariant of w-knotted foams is essentially the same as a
solution of the Kashiwara-Vergne KV ] conjecture and much of the Alekseev-TorossiarAT |
work on Drinfel'd associators and Kashiwara-Vergne can be re-int@reted as a study of
w-knotted trivalent graphs.

The true value of w-knots, though, is likely to emerge later, for we &pect them to serve
as a warmup example for what we expect will be even more interesting | the study of
virtual knots, or v-knots. We expect v-knotted objects to provide the global context whose
projectivization (or \associated graded structure™) will be the E tingof-Kazhdan theory of
deformation quantization of Lie bialgebras EK].

This paper was split in two and became the rst two parts of a four-part series (WKO1|{
[WKO41]). The remaining relevance of this paper is due to the series of videaped lectures
(wClips) that are linked here.

Date: rst edition Sep. 27, 2013, this edition Feb. 17, 2015. ThearXiv:1309.7155edition may be older.
1991 Mathematics Subject Classi cation. 57M25.
Key words and phrases. virtual knots, w-braids, w-knots, w-tangles, knotted graphs, nite type invari-
ants, Alexander polynomial, Kashiwara-Vergne, associators, fre Lie algebras.
This work was partially supported by NSERC grant RGPIN 262178. Electronic version, videos (wClips)
and related les at [WKOO], http://www.math.toronto.edu/ ~drorbn/papers/WKO/ .
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1. Introduction

1.1. Dreams. We have a dream, at least partially founded on reality, that many of the
di cult algebraic equations in mathematics, especially those that arewritten in graded wClip
spaces, more especially those that are related in one way or anotteequantum groups Prl],  120111-1
and even more especially those related to the work of Etingof and Kadan [EK], can be = aamm
understood, and indeed, would appear more natural, in terms of ite type invariants of -
various topological objects. —
We believe this is the case for Drinfel'd's theory of associator®m2], which can be in-  starts
terpreted as a theory of well-behaved universal nite type invariats of parenthesized tan- \ciips are
gles [LM2, BN3], and even more elegantly, as a theory of universal nite type invants of explained
knotted trivalent graphs [Dal]. in
We believe this is the case for Drinfel'd's \Grothendieck-Teichmuller @up" [Dr3] which is Section 1.6.
better understood as a group of automorphisms of a certain algelr structure, also related
to universal nite type invariants of parenthesized tanglesgN6].
And we're optimistic, indeed we believe, that sooner or later the workf Etingof and
Kazhdan [EK] on quantization of Lie bialgebras will be re-interpreted as a consiction of a
well-behaved universal nite type invariant of virtual knots [Ka2] or of some other class of
virtually knotted objects. Some steps in that direction were takery Haviv [Hav].
We have another dream, to construct a useful \Algebraic Knot Thory". As at least a
partial writeup exists [BN8], we'll only state that an important ingredient necessary to ful |
that dream would be a \closed form® formula for an associator, at least in some reduced
sense. Formulae for associators or reduced associators werd@ntselves the goal of several
studies undertaken for various other reason&11, Lie, Kur, Leel].

1.2. Stories. Thus the rst named author, DBN, was absolutely delighted when in dnuary
2008 Anton Alekseev described to him his joint workAT ] with Charles Torossian | Anton
told DBN that they found a relationship between the Kashiwara-Vegne conjecture KV ], a
cousin of the Du o isomorphism (which DBN already knew to be knotteoretic BLT]), and
associators taking values in a space calleder, which he could identify as \tree-level Jacobi
diagrams"”, also a knot-theoretic space related to the Milnor invarids [BN2, HM]. What's
more, Anton told DBN that in certain quotient spaces the Kashiwaravergne conjecture can
be solved explicitly; this should lead to some explicit associators!

So DBN spent the following several months trying to understandAll' |, and this paper
is a summary of these e orts. The main thing we learned is that the Akseev-Torossian
paper, and with it the Kashiwara-Vergne conjecture, t very nicéy with our rst dream
recalled above, about interpreting algebra in terms of knot theoryindeed much of AT ] can
be reformulated as a construction and a discussion of a well-behdwveniversal nite type
invariant Z of a certain class of knotted objects (which we will call here w-knteid), a certain
natural quotient of the space of virtual knots (more precisely,ixtual trivalent tangles). And
our hopes remain high that later we (or somebody else) will be able tgpoit this relationship

lunderstanding the authors' history and psychology ought neverbe necessary to understand their papers,
yet it may be helpful. Nothing material in the rest of this paper relies on Section1.1.
2\ g-tangles” in [LM2], \non-associative tangles” in [BN3].
3The phrase \closed form" in itself requires an explanation. See Seitin 7.1.
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in directions compatible with our second dream recalled above, on tlwenstruction of an
\algebraic knot theory".

The story, in fact, is prettier than we were hoping for, for it has tle following additional
gualities:

w-Knotted objects are quite interesting in themselves: as statad the abstract, they are
related to combinatorial group theory via \basis-conjugating” atomorphisms of a free
group F,,, to groups of movies of ying rings inR3, and more generally, to certain classes
of knotted surfaces inR*. The references includegH, FRR, Gol, Mc, S4.

The \chord diagrams" for w-knotted objects (really, these aredrrow diagrams") describe
formulae for invariant tensors in spaces pertaining to not-necesfly-metrized Lie alge-
bras in much of the same way as ordinary chord diagrams for ordiryaknotted objects
describe formulae for invariant tensors in spaces pertaining to nmzied Lie algebras. This
observation is bound to have further implications.

Arrow diagrams also describe the Feynman diagrams of topologicaF Bheory [CCM,
CCFM] and of a certain class of Chern-Simons theorielsd]. Thus it is likely that our
story is directly related to quantum eld theory”.

When composed with the map from knots to w-knotsZ becomes the Alexander poly-
nomial. For links, it becomes an invariant stronger than the multi-valable Alexander
polynomial which contains the multi-variable Alexander polynomial asraeasily identi-
able reduction. On other w-knotted objectsZ has easily identi able reductions that
can be considered as \Alexander polynomials" with good behaviourlaéive to various
knot-theoretic operations | cablings, compositions of tangles, et. There is also a certain
speci ¢ reduction ofZ that can be considered as the \ultimate Alexander polynomial” |
in the appropriate sense, it is the minimal extension of the Alexandg@olynomial to other
knotted objects which is well behaved under a whole slew of knot thretic operations,
including the ones named above.

1.3. The Bigger Picture.  Parallel to the w-story run the possibly more signi cant u-story
and v-story. The u-story is about u-knots, or more generally, knotted objects (braids,
links, tangles, etc.), where \u" stands for gual; hence the u-story is about ordinary knot
theory. The v-story is about v-knots, or more generally, v-knded objects, where \v" stands
for virtual, in the sense of Kau man [Kaz2].

The three stories, u, v, and w, are di erent from each other. Yethey can be told along
similar lines | rst the knots (topology), then their nite type invaria nts and their \chord
diagrams" (combinatorics), then those map into certain universagénveloping algebras and
similar spaces associated with various classes of Lie algebras (lowlage and nally, in
order to construct a \good" universal nite type invariant, in each case one has to confront
a certain deeper algebraic subject (high algebra). These storieg® &ummarized in a table
form in Figure 1.

u-Knots map into v-knots, and v-knots map into w-knots. The other parts of our stories,
the \combinatorics" and \low algebra" and \high algebra" rows of Figure 1, are likewise
related, and this relationship is a crucial part of our overall themeThus we cannot and will

4Some non-perturbative relations between BF theory and w-knotswas discussed by Baez, Wise and
Crans BWC].
SThough the composition\u! v! w"is not 0. In fact, the composed mapu! w is injective.
4



u-Knots % v-Knots % w-Knots

- Ordinary (usual) knotted | Virtual knotted objects | | Ribbon knotted objects in
S objects in 3D | braids, |\algebraic" knotted objects, | 4D; \ying rings". Like v,
oS | knots, links, tangles, knot-|or \not specically embed- | but also with \overcrossings
S | ted graphs, etc. ded" knotted objects; knots | commute".
= drawn on a surface, modulg

stabilization.

Chord diagrams and Jacobi| Arrow diagrams and v-| Like v, but also with \tails
diagrams, modulo 4I', STU, | Jacobi diagrams, modulo| commute”. Only \two in one
IHX , etc. 6T and various \directed" | out" internal vertices.

STUs andIHX s, etc.

Finite dimensional metrized | Finite dimensional Lie | Finite dimensional co-
Lie algebras, represens bi-algebras, representations| commutative Lie bi-algebras

tations, and associated| and associated spaces. (i.e., gn g ), representations,

spaces. and associated spaces.

The Drinfel'd theory of asso- | Likely, quantum groups and | The Kashiwara-Vergne-

ciators. the Etingof-Kazhdan theory | Alekseev-Torossian theory|
of quantization of Lie bi- | of convolutions on Lie
algebras. groups and Lie algebras.

High Algebral Low AlgebraCombinatorics

Figure 1. The u-v-w Stories

not tell the w-story in isolation, and while it is central to this article, we will necessarily also 120111-1

include some episodes from the u and v series.

1.4. Plans. Our order of proceedings is: w-braids, w-knots, generalities, argles, w-
tangled foams. For more detailed information consult the \Sectionunmary" paragraphs
below and at the beginning of each of the sections. An \odds and esidsection follows on
page93, and a glossary of notation is on pag@s.

Section 2, w-Braids. (page 7) This sec- case), and 4T-like relations. In2.4 we de ne and
tion is largely a compilation of existing liter- construct a universal nite type invariant Z for
ature, though we also introduce the language w-braids | it turns out that the only algebraic
of arrow diagrams that we use throughout the tool we need to usg is the formal exponential
rest of the paper. In 2.1 and 2.2 we de ne v- function exp(a) := a"=nl. In 2.5 we study
braids and then w-braids and survey their rela- some good algebraic properties o, its injec-
tionship with basis-conjugating automorphisms tivity, and its uniqueness, and we conclude with
of free groups and with \the group of (horizon- the slight modi cations needed for the study of
tal) ying rings in R3" (really, a group of knot- non-horizontal ying rings.
ted tubes in R%). In 2.3 we play the usual game  Section 3, w-Knots. (page 23) In 3.1 we
of introducing nite type invariants, weight sys- de ne v-knots and w-knots (long v-knots and
tems, chord diagrams (arrow diagrams, for this long w-knots, to be precise) and discuss the map

5
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at 0:03:10

v! w. In 3.2 we determine the space of \chord spaces of \arrow diagrams",AY(",) and AW (",).
diagrams" for w-knots tolbe the spaceAY(") We then construct a homomorphic expansionZ,

of arrow diagrams modulo4T and TC relations Or & \well-behaved” universal nite type invari-

and in 3.3we compute some relevant dimensions.ant for w-tangles. Once again, the gnly alge-
In 3.5we show that A¥(") can be re-interpreted braic tool we need to use is expd) :=  a"=nl,

as a space of trivalent graphs modulo STU- and and indeed, Sec5.1is but a routine extension of
IHX-like relations, and is therefore related to parts of Section 3. We break away in Sec.5.2
Lie algebras (Sec.3.6). This allows us to com- and show that A¥("n) = U(a, tdemn try),

pletely determine AW(")_ With no diculty at where a, is an Abelian algebra of rankn and
all in 3.4 we construct a universal nite type in- Wheretder, and tr,, two of the primary spaces
variant for w-knots. With a bit of further dif-  used by Alekseev and TorossianAT ], have sim-
culty we show in Sec. 3.7 that it is essentially Ple descriptions in terms of words and free Lie

equal to the Alexander polynomial. algebras. We also show that some functionals
Section 4, A|gebraic Structures, Projec_ StUdie.d In[AT], div and ] s have a naturgl inter-
tivizations, Expansions, Circuit Algebras. pretation in our language. In 5.3 we discuss a

(page 48) In this section we de ne the \projec- subclass of w-tangles called \special” w-tangles,
tivization" (Sec. 4.2) of an arbitrary algebraic and relate them by similar means to Alekseev
structure (4.1) and introduce the notions of \ex- and Torossian's sder, and to \tree level" ordi-
pansions” and \homomorphic expansions" ¢.3) nary Vassiliev theory. Some conventions are de-
for such projectivizations. Everything is so gen- Scribed in Sec.5.4 and the uniqueness ofZ is
eral that practically anything is an example. The studied in Sec5.5.
baby-example of quandles is built in into the sec-  Section 6, w-Tangled Foams.  (page 69)
tion; the braid groups and w-braid groups ap- If you have come this far, you must have no-
peared already in Section2, yet our main goal ticed the approximate Bolero spirit of this arti-
is to set the language for the examples of w-cle. In every chapter a new instrument comes
tangles and w-tangled foams, which appear later to play; the overall theme remains the same,
in this paper. Both of these examples are types but the composition is more and more intricate.
of \circuit algebras”, and hence we end this sec- In this chapter we add \foam vertices" to w-
tion with a general discussion of circuit algebras tangles (and a few lesser things as well) and ask
(Sec.4.4). the same questions we asked before; primarily,
Section 5, w-Tangles. (page56) In Sec.5.1 \is there a homomorphic expansion?”. As we
we introduce v-tangles and w-tangles, the obvi- shall see, in the current context this question is
ous v- and w- counterparts of the standard knot- €quivalent to the Alekseev-Torossian fT] ver-
theoretic notion of \tangles", and brie y discuss ~sion of the Kashiwara-Vergne KV ] problem and

their nite type invariants and their associated €Xxplains the relationship between these topics
and Drinfel'd's theory of associators.

1.5. Acknowledgement. We wish to thank Anton Alekseev, Jana Archibald, Scott Carter,
Karene Chu, Iva Halacheva, Joel Kamnitzer, Lou Kau man, Petet_ee, Louis Leung, Dylan
Thurston, Lucy Zhang, and Jean-Baptiste Meilhan for commentsral suggestions.

1.6. wClips. Alongside this paper there is a series of video clips explaining parts af fthe
series as a whole can be found at/KOO]; references to speci c clips and speci ¢ times within
clips appear at the margin of this paper. We thank Peter Lee for corbuting wClip:120201
and Karene Chu for contributingwClip:120314


http://katlas.math.toronto.edu/drorbn/dbnvp/wClips-120118-1.php
http://katlas.math.toronto.edu/drorbn/dbnvp/wClips-120201.php
http://katlas.math.toronto.edu/drorbn/dbnvp/wClips-120314.php

2. w-Braids

Section Summatry. This section is largely a compilation of existing literature,

though we also introduce the language of arrow diagrams thatve use throughout
the rest of the paper. In 2.1 and 2.2 we de ne v-braids and then w-braids and
survey their relationship with basis-conjugating automorphisms of free groups and
with \the group of (horizontal) ying rings in  R3" (really, a group of knotted tubes

in R%). In 2.3 we play the usual game of introducing nite type invariants, weight

systems, chord diagrams (arrow diagrams, for this case), ah4T-like relations.

In 2.4 we de ne and construct a universal nite type invariant Z for w-braids |

it turns out that thesonly algebraic tool we need to use is the brmal exponential

function exp(a) :=  a"=nl. In 2.5 we study some good algebraic properties ot ,

its injectivity, and its uniqueness, and we conclude with the slight modi cations

needed for the study of non-horizontal ying rings.

2.1. Preliminary: Virtual Braids, or v-Braids. Our main object of study for this sec-
tion, w-braids, are best viewed as \virtual braids" Ba, KL, BB], or v-braids, modulo one
additional relation. Hence we start with v-braids.

It is simplest to de ne v-braids in terms of generators and relationsither algebraically or
pictorially. This can be done in at least two ways | the easier-at- rst but philosophically-
less-satisfactory \planar" way, and the harder to digest but maally more correct \abstract"
way.®

2.1.1. The \Planar" Way. For a natural number n set vB,, to be the group generated by
symbols ; (1 i n 1), called\crossings" and graphically represented by an overcsisg

\between strandi and strandi + 1" (with inverse )’, and s;, called \virtual crossings"
and graphically represented by a non-crossing,, also \between strandi and strandi + 1",
subject to the following relations:

The subgroup ofvB, generated by the virtual crossings; is the symmetric groupS,,
and the s;'s correspond to the transpositionsi(i + 1). That is, we have

s?=1; SiSi+1Si = Si+1SiSi+1 ] and ifji jj> 1lthen s = ss: (1)
In pictures, this is
iﬁ T :Fij u%%u (2)
i+l 00+l i+l joj+1l 0 i+l j g+l
ioi+li+2 0 i+l +2

Note that we read our braids from bottom to top.
The subgroup ofvB, generated by the crossings;'s is the usual braid groupuB,, and
i corresponds to the braiding of strand over strandi + 1. That is, we have

JRTE NI FUR R U and ifji jj> 1then Pp= i 3)

6Compare with a similar choice that exists in the de nition of manifolds, as either appropriate subsets
of some ambient Euclidean spaces (module some equivalences) or &staact gluings of coordinate patches
(modulo some other equivalences). Here in the \planar" approach bSection 2.1.1 we consider v-braids
as \planar" objects, and in the \abstract approach" of Section 2.1.2 they are just \gluings" of abstract
\crossings", not drawn anywhere in particular.
"We sometimes refer to  as a \positive crossing” and to  as a \negative crossing".
7

wClip
120111-2

starts



In pictures, dropping the indices, this is

The rst of these relations is the \Reidemeister 3 move” of knot theory. The second is
sometimes called \locality in space"BN3].
Some \mixed relations”,

Si .S = Sw1 sy andifji jj>1then s ;= s (5)

In pictures, this is

S D e Ve e

Remark 2.1 The \skeleton" of a v-braid B is the set of strands appearing in it, retaining
the association between their beginning and ends but ignoring all tlegossing information.
More precisely, it is the permutation induced by tracing alond, and even more precisely
it is the image of B via the \skeleton morphism”" & vB,! S, dened by & ;) = &s;) = S
(or pictorially, by & )= & )= ). Thus the symmetric groupS, is both a subgroup and
a quotient group ofvB,,.

Like there are pure braids to accompany braids, there are pure el braids as well:

De nition 2.2. A pure v-braid is a v-braid whose skeleton is the identity permutationthe
group PyB,, of all pure v-braids is simply the kernel of the skeleton morphis& vB,! S,.

We note the sequence of group homomorphisms

1! PB,! wW,'* s, ! L 7)

This sequence is exact and split, with the splitting given by the inclusios, ! vB, men-
tioned above (). Therefore we have that

VB, = PB,0 S;: (8)

2.1.2. The \Abstract" Way. The relations (2) and (6) that govern the behaviour of virtual
crossings precisely say that virtual crossings really are \virtual" | if a piece of strand is
routed within a braid so that there are only virtual crossings aroud it, it can be rerouted
in any other \virtual only" way, provided the ends remain xed (this is Kau man's \detour
move" [Ka2, KL]). Since a v-braidB is independent of the routing of virtual pieces of strand,
we may as well never supply this routing information.

8The Reidemeister 2 move is the relations i 1 = 1 which is part of the de nition of \a group”. There
is no Reidemeister 1 move in the theory of braids.
8



Thus for example, a perfectly fair verbal description of the (pute v-braid & JA
on the right is \strand 1 goes over strand 3 by a positive crossing ¢h likewise
positively over strand 2 then negatively over 3 then 2 goes positivebyer 1". We
don't need to specify how strand 1 got to be near strand 3 so it cam gver it |
it got there by means of virtual crossings, and it doesn't matter he. Hence we
arrive at the following \abstract" presentation of PMB, and vB,:

1 12 13

Proposition 2.3. (E.g. [Ba])

(1) The group RB, of pure v-braids is isomorphic to the group generated by syist j
for1 i6j n (meaning \strand i crosses over strang at a positive crossing®), wClip
subject to the third Reidemeister move and to locality in spa (compare with (3)  120118-2

and (4)):
i ik jk = gk ik j whenever  jfi;j;k gj =3; starts
ik = K whenever  jfi;j; k;l gj = 4:
wClip
(2) If 2 S, then with the action ; := ;; we recover the semi-direct product decom- 120111-2
position B, = PvB, 0 S,. ends

2.2. On to w-Braids. To de ne w-braids, we break the symmetry between over crossisg
and under crossings by imposing one of the \forbidden moves" virii knot theory, but not
the other:

i i+1Si = Si+1 i i+l yet Si i+1 i 6 j+1 iSi+1: 9)
Alternatively,

ik =ik i yet ik k & jk k-

The relation we have just imposed may be called the \unforbidden relan", or, perhaps
more appropriately, the \overcrossings commute" relationQC). Ignoring the non-crossing¥

, the OC relation says that it is the same if strand rst crosses over strandj and then
over strandk, or if it rst crosses over strandk and then over strandj. The \undercrossings
commute" relation UC, the one we do not impose ing), would say the same except with
\under" replacing \over".

In pictures, this is

De nition 2.4.  The group of w-braids iswB, := vB,=0OC. Note that &descends taB,, and
hence we can de ne the group of pure w-braids to tfPWB,, := ker & wB, ! S,. We still have
a split exact sequence as at’jf and a semi-direct product decompositiomB,, = PwB, 0 S,.

9The inverse, i ! is \strand i crosses over strand at a negative crossing"
10why this is appropriate was explained in the previous section.
9



Exercise 2.5. Show that the OC relation is equivalent to the relation

AN 7
1 — 1
i Si+1 i = i+1Si 41 or ®=®
s N

While mostly in this paper the pictorial / algebraic de nition of w-braids (and other w-
knotted objects) will su ce, we ought describe at least brie y 2-3further interpretations of
wB,:

2.2.1. The group of ying rings. Let X, be the space of all placements afhumbered disjoint
geometric circles inR3, such that all circles are parallel to thexy plane. Such placements
will be called horizontal*. A horizontal placement is determined by the centres iR of the
n circles and byn radii, so dimX, = 3n+ n =4n. The permutation group S, acts onX,
by permuting the circles, and one may think of the quotienX;, := X,=S, as the space of
all horizontal placements ofn unmarked circles inR3. The fundamental group 1(X,) is
a group of paths traced byn disjoint horizontal circles (modulo homotopy), so it is fair to
think of it as \the group of ying rings".

Theorem 2.6. The group of pure w-braids ®B,, is isomorphic to the group of ying rings
1(Xy). The group WB,, is isomorphic to the group of unmarked ying rings 1(X,).

For the proof of this theorem, see@ol, Sg and especially BH]. Here we will contend
ourselves with pictures describing the images of the generatorswds,, in ;(X,) and a few

comments:
QO o
o =
Oy (@)
OO Oo
i1 +1 i 1 +1

Thus we map the permutations; to the movie clip in which ring numberi trades its
place with ring numberi + 1 by having the two ying around each other. This acrobatic
feat is performed inR3 and it does not matter if ring numberi goes \above" or \below" or
\left" or \right" of ring number i+ 1 when they trade places, as all of these possibilities are
homotopic. More interestingly, we map the braiding ; to the movie clip in which ringi +1
shrinks a bit and ies through ringi. It is a worthwhile exercise for the reader to verify that

wClip the relations in the de nition of wB, become homotopies of movie clips. Of these relations
120118-2 it is most interesting to see why the \overcrossings commute” rel@n ; j+1Si = Si+1 i i+1
ends holds, yet the \undercrossings commute" relation; * .,7si = si,p ;1,7 doesnt.

Exercise 2.7. To be perfectly precise, we have to specify the y-through diremn. In our
notation, ; means that the ring corresponding to the under-strand approbhes the bigger
ring representing the over-strand from below, ies through it ancexists above. For ; ' we
are \playing the movie backwards", i.e., the ring of the under-strath comes from above and
exits below the ring of the over-strand.

11 For the group of non-horizontal ying rings see Section2.5.4
10



Let \the signed w braid group”, sAB,, be the group of horizontal ying rings where both
y-through directions are allowed. This introduces a \sign" for eab crossing ;:

cO =)
o) <O

i+: + = @ i = - @
O» Co
Oo Oo

i i+1 i i+1

In other words, sAB,, is generated bys;, i+ and ; , fori =1;::;n. Check that in sAB,
i =S .,'s;, and this, along with the other obvious relations impliesrB,, = WB .
For a rigorous discussion of orientations and signs, see Section

2.2.2. Certain ribbon tubes inR*. With time as the added dimension, a ying ring in R3
traces a tube (an annulus) inR*, as shown in the picture below:

i +1 i+l

wClip
120118-3

\

Note that we adopt here the drawing conventions of Carter and 8a [CS] | we draw
surfaces as if they were projected frolR* to R3, and we cut them open whenever they are
\hidden" by something with a higher fourth coordinate.
Note also that the tubes we get irR* always bound natural 3D \solids" | their \insides", wClip
in the pictures above. These solids are disjoint in the casesfand have a very speci c kind 120118-3
of intersection in the case of ; | these are transverse intersections with no triple points,
and their inverse images are a meridional disk on the \thin" solid tuberal an interior disk
on the \thick" one. By analogy with the case of ribbon knots and ribln singularities inR3
(e.g. Kal, Chapter V]) and following Satoh B4, we call this kind if intersections of solids continues

starts

in R* \ribbon singularities" and thus our tubes in R* are always \ribbon tubes". Sec.2.54
2.2.3. Basis conjugating automorphisms df,. Let F, be the free (non-Abelian) group with
generators q;:::; n. Artin's theorem (Theorems 15 and 16 ofAr]) says that the (usual) wClip

braid group uB, (equivalently, the subgroup ofwB, generated by the ;'s) has a faithful 1501251
right action on F,,. In other words, uB, is isomorphic to a subgroupH of Aut®®(F,) (the

group of automorphisms ofF,, with opposite multiplication; ; , := , ). Precisely,

using (;B) 7! B to denote the right action of Aut®’(F,) on F,,, the subgroupH consists

of those automorphism8B : F, ! F, of F, that satisfy the following two conditions: starts

(1) B maps any generator; to a conjugate of a generator (possibly di erent). That is,
there is a permutation 2 S, and elementsa; 2 F, so that for everyi,

i B=a " a: (11)

(2) B xes the ordered product of the generators of,,,

1

12 n B= 1> N
11



McCool's theorem [Mc] says that the same holds tru€ if one replaces the braid group
uB, with the bigger groupwB, and drops the second condition above. S&B, is precisely
the group of \basis-conjugating” automorphisms of the free gup F,, the group of those

di erent) basis element.
The relevant action is explicitly de ned on the generators ohB, and F,, as follows (with
the omitted generators ofF, always xed):

(i ier) Si=Ciers 1) Civinr) 0= ( ie1s ie1 i ja1) o= it (12
It is a worthwhile exercise to verify that respects the relations in the de nition ofwB
and that the permutation in (11) is the skeleton&B).

There is a more conceptual description of, in terms of the structure ofwB ., . Consider
the inclusions

WB.!, WBhu - Fy (13)

Here is the inclusion ofwB, into wB,+; by adding an inert
(n+1) ststrand (it is injective as it has a well de ned one sided i 7! —
inverse | the deletion of the (n + 1)-st strand). The inclusion 1 ii+1 nn+1
iy of the free groupF, into WB,; isdened by iy( i) = in+1-
The imagei,(Fn) WB,.1 is the set of all w-braids whose rstn strands are straight and
vertical, and whose (1 +1)-st strand wanders among the rstn strands mostly virtually (i.e.,
mostly using virtual crossings), occasionally slipping under one ofdlen strands, but never
going over anything. In the \ ying rings" picture of Section 2.2.1, the imagei (F,) WBn+1
can be interpreted as the fundamental group of the complement R® of n stationary rings
(which is indeedF,) | in iy(F,) the only ring in motion is the last, and it only goes under,
or \through", other rings, so it can be replaced by a point object Wwose path is an element
of the fundamental group. The injectivity ofi, follows from this geometric picture.

One may explicitly verify that i,(F,) is normalized by (WB,) in wB.; (that MJUA
is, the setiy(F,) is preserved by conjugation by elements o{wB,)). Thus the B

following de nition (also shown as a picture on the right) makes senséor B 2 L]
wB, WwB, andfor 2F, wWBnui: m

B:=i,'(B 'B) (14)
It is a worthwhile exercise to recover the explicit formulae inl(2) from the above de nition.

Warning 2.8. People familiar with the Artin story for ordinary braids should be warred that
even thoughwB, acts onF,, and the action is induced from the inclusions_ in1(3) in much

of the same way as the Artin action is induced by inclusionsB !, uB+1 . F., there are
also some di erences, and some further warnings apply:

In the ordinary Artin story, i(Fy) is the set of braids inuB,.; whose rst n strands are
unbraided (that is, whose image inuB, via \dropping the last strand” is the identity).
This is not true for w-braids. For w-braids, ini,(F,) the last strand always goes \under"
all other strands (or just virtually crosses them), but never ove

12Though see Warning2.8.
12



Thus unlike the isomorphismPuB ,+; = PB, n F,, itis not true that PwB,.; is isomor-
phic to PWB, n F,.

The Overcrossings Commute relation imposed B breaks the symmetry between over-
crossings and undercrossings. Thus lej: F, ! wB, be the \opposite" of i, mapping
into braids in which the last strand is always \over" or virtual. Theni, is not injective
(its image is in fact Abelian) and its image is not normalized by(wB,). So there is no
\second" action ofwB, on F, de ned usingi,.

For v-braids, bothi, and i, are injective and there are two actions o¥B, on F, | one
de ned by rst projecting into w-braids, and the other de ned by rst projecting into v-
braids modulo \Undercrossings Commute". Yet v-braids contain nre information than
these two actions can see. The \Kishino" v-braid below, for examplés visibly trivial
if either overcrossings or undercrossings are made to commutet Yy computing its
Kau man bracket we know it is non-trivial as a v-braid [WKOO, \The Kishino Braid"]:

g The commutator ab la b
N oKX ROV ) "mutator ab °
@pof v-braids a; bannihilated A .
| | | by OC/UC, respectively,
\ \ b \ . ; : 120125-1
with a minor cancellation. ends

a

Problem 2.9. Is PwB, a semi-direct product of free groups? Note that botPuB, and
PWB, are such semi-direct products: FoPuB,, this is the well known \combing of braids";
it follows from PuB, = PuB, 1 n F, 1 and induction. For PvB,,, it is a result stated in [Ba]
(though our own understanding of Ba] is incomplete).

Remark 2.1Q Note that Guterrez and Krstt [ GK] nd \normal forms" for the elements of
PwB,, yet they do not decide whethePwB , is \automatic" in the sense of Ep].

2.3. Finite Type Invariants of v-Braids and w-Braids. Just as we had two de ni-
tions for v-braids (and thus w-braids) in Section2.1, we will give two (obviously equiv-
alent) developments of the theory of nite type invariants of v-baids and w-braids | a
pictorial/topological version in Section2.3.1, and a more abstract algebraic version in Sec-
tion 2.3.2

2.3.1. Finite Type Invariants, the Pictorial Approach. In the standard theory of nite type  wClip
invariants of knots (also known as Vassiliev or Goussarov-Vassiliewariants) [Goul, Vas, 120125-2
BN1, BN7] one progresses from the de nition of nite type via iterated di erences to chord

diagrams and weight systems, to® (and other) relations, to the de nition of universal nite

type invariants, and beyond. The exact same progression (with dérent objects playing sim-

ilar roles, and sometimes, when yet insu ciently studied, with the lasistep or two missing) is describes the
also seen in the theories of nite type invariants of braidsgN5], 3-manifolds ph, LMO, Le], ~ Standard

virtual knots [GPV, Pa] and of several other classes of objects. We thus assume thia t t&?gry'
reader has familiarity with these basic ideas, and we only indicate brig how they are Y
implemented in the case of v-braids and w-braids.

Much like the formula ! of the Vassiliev-Goussarov fame, given a v-braid
invariant V: vB,, ! A valued in some Abelian groupA, we extend it to \singular" v- wClip
braids, braids that contain \semi-virtual crossings"” like and  using the formulaeV( ) := 120208

V() V()andV( ):=V( ) V() (see[GPV, Po, BHLR]). We say that\V is of type

m" if its extension vanishes on singular v-braids having more tham semi-virtual crossings.
13
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Figure 2. On the left, a 3-singular v-braid and its corresponding 3-arrovagiam. A
self-explanatory algebraic notation for this arrow diagram(&isagiazs; 3421) picture and
in algebraic notation. Note that we regard arrow diagrams as grabberetic objects, and
hence the two arrow diagrams on the right, whose underlying grapbste same, are regarded
as equal. In algebraic notation this means that we always isgthe relations;; ay = ay ajj
when the indices, j, k, and| are all distinct.

Fi-H1-FH-FH-TH TR

ajax + ajak + akak = akay + Ak t ak Ak
or  [ay;ax]+[a;ax]+[ax;ax]=0

Figure 3. The 6T relation. Standard knot theoretic conventions apply | only theelevant
parts of each diagram is shown; in reality each diagram may havthdu vertical strands
and horizontal arrows, provided the extras are the same in all 6rdiag. Also, the vertical
strands are in no particular order | other valideT relations are obtained when those strands
are permuted in other ways.

Up to invariants of lower type, an invariant of typem is determined by its \weight system
which is a functional W = W,(V) de ned on \m-singular v-braids modulo = =

Let us denote the vector space of all formal linear combinations sfich equivalence classes
by G,D}. Much asm-singular knots modulo = can be identi ed with chord diagrams,
the basis elements o0&, D} can be identi ed with pairs (D; ), whereD is a horizontal arrow
diagram and is a \skeleton permutation”. See Figure2.

We assemble the spaces, D! together to form a single graded spacDy. .= 1 _,G,DY.
Note that throughout this paper, whenever we write an in nite direct sum, we automatically
complete it. Thus in DY we allow in nite sums with one term in each homogeneous piece
GnD}.

In the standard nite-type theory for knots, weight systems alays satisfy the 4 rela-
tion, and are therefore functionals orA := D=4T. Likewise, in the case of v-braids, weight
systems satisfy the 6T relation” of [GPV, Po, BHLR], shown in Figure3, and are therefore
functionals on A} := D;=6T. In the case of w-braids, the \overcrossings commute" rela-
tion (9) implies the \Tails Commute" (TC) relation on the level of arrow diagrams, and in

the presence of the TC relation, two of the terms in the B relation drop out, and what
14



E-Ed H-EEH T

8jj Ak = Ak aj gj gk T akak = aka + Ak Ak
or [aj;ax]=0 or [a; +ak;ax]=0

I
Figure 4. The TC and the4T relations.

|
remains is the 4T" relation. These relations are shown in Figuré!. ThusI weight systems
of nite type invariants of w-braids are linear functionals onA} := DY=TC;4T.
The next question that arises is whether we have already foumdl the relations that weight
systems always satisry. More precisely, given a degmeelinear functional on A} = D;=6T

(or on AY = DY=TC;4T), is it always the weight system of some typen invariant V of
v-braids (or w-braids)? As in every other theory of nite type invaiants, the answer to this
guestion is a rmative if and only if there exists a \universal nite typ e invariant” (or simply,

an \expansion") of v-braids (w-braids):

De nition 2.11.  An expansion for v-braids (w-braids) is an invariantZ: vB,, ! A | (or
Z:wB,!A V) satisfying the following \universality condition™:
If B is anm-singular v-braid (w-braid) andD 2 G,,D} is its underlying arrow diagram
as in Figure 2, then

Z(B) = D + (terms of degree>m):

Indeed if Z is an expansion andW 2 G,A?'® the universality condition implies that
W Z is a nite type invariant whose weight system isW. To go the other way, if ©;) is a
basis ofA consisting of homogeneous elements, W() is the dual basi%ofA? and (V,) are
nite type invariants whose weight systems are thé\;'s, then Z(B) := ; D;Vi(B) de nes
an expansion.

In general, constructing a universal nite type invariant is a hard aisk. For knots, one uses
either the Kontsevich integral or perturbative Chern-Simons thery (also known as \con gu-
ration space integrals" BT] or \tinker-toy towers" [ Th]) or the rather fancy algebraic theory
of \Drinfel'd associators" (a summary of all those approaches is 4dB8S]). For homology
spheres, this is the \LMO invariant” [LMO, Le] (also the \Arhus integral" [BGRT2]). For
v-braids, we still don't know if an expansion exists. As we shall seelb, the construction
of an expansion for w-braids is quite easy.

2.3.2. Finite Type Invariants, the Algebraic Approach.For any group G, one can form the
group algebraFG for some eld F by allowing formal linear combinations of group elements wClip
and extending multiplication linearly. The augmentation idealis the ideal generated by 120201
di erences, or equivalently, the set of linear combinations of grouglements whose coe cients
sum to zero: ( )

X X«

| = ag:.-a 2F;g2G; a =0

i=1 i=1

starts

13A here denotes eitherA} or A, or in fact, any of many similar spaces that we will discuss later on.
15



wClip
120201

is much more
detailed on
these
matters

Powers of the augmentation ideal provide a ltration of the group lebra. Let A(G) :=
o ol ™=1 ™1 be the associated graded space corresponding to this Itration.

De nition 2.12.  An expansion for the groupG is a mapZ: G ! A (G), such that the
linear extensionZ: FG! A (G) is lItration preserving and the induced map

agrZ:(grFG=A(G))! (gr A(G)= A(G))

is the identity. An equivalent way to phrase this is that the degreen piece ofZ restricted
to I ™ is the projection ontol ™=| M*1

Exercise2.13 Verify that for the groups PvB,, and PwB , the m-th power of the augmentation
ideal coincides with the span of all resolutions ah-singular v- or w-braids (by a resolution
we mean the formal linear combination where each semivirtual crasg is replaced by the
appropriate di erence of a virtual and a regular crossing). Thenheck that the notion of
expansion de ned above is the same as that of De nitioR.11, restricted to pure braids.

Finally, note the functorial nature of the construction above. Wiat we have described is a
functor, called \projectivization" proj: Groups! GradedAlgebras which assigns to each
group G the graded algebraA(G). To each homomorphism : G ! H, proj assigns the
induced map gr : (A(G)=gr FG)! (A(H)=gr FH).

2.4. Expansions for w-Braids.  The spaceA} of arrow diagrams onn strands is an asso-
ciative algebra in an obvious manner: If the permutations underlyingiwo arrow diagrams

are the identity permutations, we simply juxtapose the diagrams. tBerwise we \slide" ar-

rows through permutations in the obvious manner | if is a permutation, we declare that
aciyj) = & . Instead of seeking an expansionB, ! A ', we set the bar a little higher

and seek a \homomorphic expansion™:

De nition 2.14. A homomorphic expansionZ: wB, ! A [ is an expansion that carries
products inwWB, to products in A}.

To nd a homomorphic expansion, we just need to de ne it on the gesrators of wB,
and verify that it satis es the relations de ning wB,, and the universality condition. Follow-
ing [BP, Section 5.3] andAT, Section 8.1] we seZ( )= (thatis, a transposition in wB
gets mapped to the same transposition i}/, adding no arrows) andZ( ) = exp( )
This last formula is important so deserves to be magni ed, explainechd replaced by some

new notation:
. ARE

N[
+
ST

Z = exp = + + +i=

Thus the new notation!®  stands for an \exponential reservoir" of parallel arrows, much
like e =1+ a+ aa=2+ aaa=3! + :::is a \reservoir" of a's. With the obvious interpretation

for £° (the  sign indicates that the terms should have alternating signs, as & @ =
16



1 a+ a’=2 a®=3!+:::), the second Reidemeister move =1 forces that we set

ea
P wClip

120201
ends

Theorem 2.15. The above formulae de ne an invarianZ : wB, ! A Y (that is, Z satis es
all the de ning relations of wB,). The resulting Z is a homomorphic expansion (that is, it
satis es the universality property of De nition 2.14).

Proof. (Following [BP, AT]) For the invariance ofZ, the only interesting relations to check
are the Reidemeister 3 relation of4) and the Overcrossings Commute relation of1(). For
Reidemeister 3, we have

8l
)

where is the permutation 321 and equality 1 holds becausa;}; a;s] = 0 by a Tails Commute
(TC) relation and elquality 2 holds becausead), + a;3;a,3] = 0 by a 4T relation. Likewise,
again using TC and4T,

- e 3‘; — ealz eaIS eazs =1 ealz +ai3 eazs =2 ealz taiztaz -
?eaL%
=]

N
P

e?
N = gfBglizglle = gfBlistan - glstantan -
A !

—=|

b

and so Reidemeister 3 holds. An even simpler proof using just the Tal®mmute relation
shows that the Overcrossings Commute relation also holds. Finallynee Z is homomorphic,
it is enough to check the universality property at degree 1, where i$ very easy:

BYEARY
i
B B

V4 = exp = + (terms of degree> 1);

and a similar computation manages the case.

Remark 2.16 Note that the main ingredient of the above proof was to show thaR :=
Z( 1) = €112 satis es the famed Yang-Baxter equation,
wClip

12p13p23 _ 23pl3p12.
R¥R™R™ = R"R™R™; 120208
whereR! means \placeR on strandsi and j". ends
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2.5. Some Further Comments.

2.5.1. Compatibility with Braid Operations. As with any new gadget, we would like to know
wClip how compatible the expansionZ of the previous section is with the gadgets we already
120215 have; namely, with various operations that are available on w-braidend with the action of

w-braids on the free groug=, (Section2.2.3.

2.5.1.1.Z is Compatible with Braid Inversion. Let denote both the WB . — B

\braid inversion" operation :wB,! WB, dened by B 7! B ! and the n n
\antipode" anti-automorphism : A¥ ' A [ de ned by mapping permu- z z
tations to their inverses and arrows to their negatives (thatisa; 7! &;). Aw W
Then the diagram on the right commutes. n n

starts

2.5.1.2. Braid Cloning and the Group-Like Property. Le denote WB. — B WB
both the \braid cloning" operation : wB,! wB, w8, dened A 5 :
by B 7! (B;B) and the \co-product" algebra morphism : A}! z zz
AY A ¥ de ned by cloning permutations (that is, 7! ) and AW N
by treating arrows as primitives (thatis,a; 7! a5 1+1 a;). A : :
Then the diagram on the right commutes. In formulae, thisis (Z(B)) = Z(B) Z(B),
which is the statement \Z(B) is group-like".

2.5.1.3. Strand Insertions. Let: wB, ! wB,.; be an operation of \in- W8, — B 4
ert strand insertion". Given B 2 wB,, the resulting B 2 wB .1 will

be B with one strand S added at some location chosen in advance | to <
the left of all existing strands, or to the right, or starting from beween  pw Jipw
the 3rd and the 4th strand ofB and ending between the 6th and the " nt
7th strand of B; when addingS, add it \inert", so that all crossings on it are virtual (this
is well de ned). There is a corresponding inert strand addition opation : A} ' A ¥,
obtained by adding a strand at the same location as for the originaland adding no arrows.
It is easy to check thatZ is compatible with ; namely, that the diagram on the right is
commutative.

z

2.5.1.4. Strand Deletions. Giverk between 1 andn, let d¢: wB,, ! WB d—k/WB
wB, ; the operation of \removing the kth strand". This operation . ni
induces a homonymous operation,: AY ' A 7V ;. if D 2 A isan z z
arrow diagram,d¢D is D with its kth strand removed if no arrows inD AW AW
start or end on thekth strand, and it is O otherwise. It is easy to check """ 4, n1
that Z is compatible with dy; namely, that the diagram on the right is

commutative.**

l4section 4.2, \dy: WB, ! wB, ;" is an algebraic structure made of two spacesuB, and wB, 1),
two binary operations (braid composition in wB, and in wB,, 1), and one unary operation, d¢. After
projectivization we get the algebraic structured, : AY I A}V , with di as described above, and an alternative
way of stating our assertion is to say thatZ is a morphism of algebraic structures. A similar remark applies
(sometimes in the negative form) to the other operations discusskin this section.

18



2.5.1.5. Compatibility with the action onF,. Let FA, denote the (degree-
completed) free associative (but not commutative) algebra on gerators
X1;:::;%Xn. Thenthereis an\expansionZ: F,! FA,denedby ; 7! e z z
(see [Lin] and the related \Magnus Expansion” of MKS]). Also, there is EA AW

a right action of A}y on FA, de ned on generators byx; = x; for 2 S, f n
and by xja; =[Xi;X;] and xca; =0 for k 6 j and extended by the Leibniz rule to the rest
of FA, and then multiplicatively to the rest of A}.

Fn WB

Exercise 2.17. Using the language of Sectiod.2, verify that FA, = proj F, and that when
the actions involved are regarded as instances of the algebraicusture \one monoid acting
on another", we have that FA, A] =proj F, wB, . Finally, use the de nition of the
action in (14) and the commutative diagrams of paragraph.5.1.1 2.5.1.2and 2.5.1.3to
show that the diagram of paragraph?.5.1.5is also commutative.

2.5.1.6. Unzipping a Strand. Giverk between 1 andh, let ug: wB, ! N N
wWB +1 the operation of \unzipping the kth strand", brie y de ned on /\ iy //\
the right. The induced operationu,: A¥ I A ¥, is also shown on >< . X
the right | if an arrow starts (or ends) on the strand being doubled, e
it is replaced by a sum of two arrows that start (or end) on either % ?
of the two \daughter strands" (and this is performed for each apw K “
independently; so if there ard arrows touching thekth strands in a = A%% + TH
diagram D, then u,D will be a sum of 2 diagrams).

In some sense, this whole paper as well as the work of Kashiwara =
and Vergne KV] and Alekseev and Torossiam[ ] is about comingto g “_k/4,\,Bn+l
grips with the fact that Z is not compatible with uy (that the diagram 6 ‘ ,

X+y

on the right is not commutative). Indeed, letx := a;z andy = a,s be ?
as on the right, and lets be the permutation 21 and the permutation AW — AW,
231. Thend;Z( ) = dy(eM2s) = €Y while Z(d; ) = ¢ . So «

the failure of d; and Z to commute is the ill-behaviour of the exponential function when its
arguments are not commuting, which is measured by the BCH formylaentral to both [KV ]
and [AT].

2.5.2. Power and Injectivity. The following theorem is due to Berceanu and Papadim&Pp,
Theorem 5.4]; a variant of this theorem are also true for ordinary hids BN2, Ko, HM],
and can be proven by similar means:

Theorem 2.18. Z:wB, ! A [ is injective. In other words, nite type invariants separae
w-braids.

Proof. Follows immediately from the faithfulness of the actior-, wB,, from the com-
patibility of Z with this action, and from the injectivity of Z: F, ! FA, (the latter is well
known, see e.g.NIKS, Lin]). Indeed if B; and B, are w-braids andZ(B,) = Z(B,), then
Z()Z(By1) = Z()Z(B,) for any 2 F,, therefore8 Z ( Bi) = Z( B,), therefore
8 B, = B,, thereforeB; = B».

15Unzipping a knotted zipper turns a single band into two parallel ones. This operation is also known as
\strand doubling", but for compatibility with operations that will be in  troduced later, we prefer \unzipping".
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Remark 2.19 Apart from the obvious, that A}y can be computed degree by degree in ex-
ponential time, we do not know a simple formula for the dimension of éhdegreem piece
of Al or a natural basis of that space. This compares unfavourably witthe situation for
ordinary braids (see e.g.N5]). Also compare with Problem2.9 and with Remark 2.10Q

2.5.3. Uniqueness.There is certainly not a unique expansion for w-braids | if Z; is an
expansion and andP is any degree-increasing linear map" ! A % (a \pollution" map),

then Z, .= (1 + P) Z,; is also an expansion, where: A¥ ! A " is the identity. But that's

all, and if we require a bit more, even that freedom disappears.

Proposition 2.20. If Z,,: wWB, ! A ¥ are expansions then there exists a degree-increasing
linear mapP: AV 1A Y sothatZ,:=(1 +P) Z,.

Proof.  (Sketch). Let\li*_%n be the unipotent completion owB,,. That is, let QwB, be the
algebra of formal linear combinations of w-braids, lek be the ideal inQwB, be the ideal
generated by = and by = , and set

WB, = limps QwB,L /1™ :

WB, is ltered with F\WB, = lim mosm | ™ 1 ™ : An \expansion” can be re-interpreted as

an \isomorphism of B, and A} as ltered vector spaces”. Always, any two isomorphisms
di er by an automorphism of the target space, and that's the essee ofl + P.

Proposition 2.21. If Zy,: wB, I A ¥ are homomorphic expansions that commute with

braid cloning (paragraph2.5.1.2) and with strand insertion (paragraph2.5.1.3), then Z, =
Z,.

Proof. (Sketch). A homomorphic expansion that commutes with strand irstions is
determined by its values on the generators, and of wB,. Commutativity with braid
cloning implies that these values must be (up to permuting the strars) group like, that is,

wClip the exponentials of primitives. But the only primitives area;, and a,;, and one may easily
120215 verify that there is only one way to arrange these so tha will respect 2 = =1 and
ends 7!+ (higher degree terms).

2.5.4. The group of non-horizontal ying rings. Let Y, denote the space of all placements of
wClip numbered disjoint oriented unlinked geometric circles iR®. Such a placement is determined
120118-3 by the centres inR? of the circles, the radii, and a unit normal vector for each circle pdiimg

in the positive direction, so dimY, =3n+ n+3n=7n. S, nZ} acts onY, by permuting

the circles and mapping each circle to its image in either an orientatiqureserving or an
orientation-reversing way. LetY, denote the quotientY,=S, nZ 5. The fundamental group

at 0:14:20 1(Y,) can be thought of as the \group of ippable ying rings". Without lo ss of generality,
we can assume that the basepoint is chosen to be a horizontal plaeait. We want to study
the relationship of this group towB,,.

Theorem 2.22. 4(Y,) is a Z}-extension of 8,, generated bys;, ; (1 i n 1), and
w; (\ips"), for 1 i n; with the relations as above, and in addition:
Wi2 =1; WW, = W, W, w;s; = siw;  wheni 6 j;j +1;
WiSi = SiWi+1, Wi+1Si = SiWi;
W= w if )80+l Wi = W yet W =S TSiWieg !
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The two most interesting ip relations in pictures:

\ § T w
](w :Q vet % g (16)
Pirloie [ 3 R A

Instead of a proof, we provide some heuristics. Since each circle
starts out in a horizontal position and returns to a horizontal posion, w = Wi~
there is an integer number of \ ips" they do in between, these arehte
generatorsw;, as shown on the right.

The rst relation says that a double ip is homotopic to doing noth-
ing. Technically, there are two di erent directions of ips, and they are the same via this
(non-obvious but true) relation. The rest of the rst line is obvious ips of di erent rings
commute, and if two rings y around each other while another one ip, the order of these
events can be switched by homotopy. The second line says that ifawings trade places with
no interaction while one ips, the order of these events can be swhted as well. However,
we have to re-number the ip to conform to the strand labelling corention.

The only subtle point is how ips interact with crossings. First of all, if ane ring ies
through another while a third one ips, the order clearly does not mizer. If a ring ies
through another and also ips, the order can be switched. Howeweif ring A ips and
then ring B ies through it, this is homotopic to ring B ying through ring A from the
other direction and then ringA ipping. In other words, commuting ; with w; changes the
\sign of the crossing" in the sense of Exercis2.7. This gives the last, and the only truly
non-commutative ip relation.

09=0|0

To explain why the ip is denoted by w, let us consider the alternative descrip- ﬂ wClip
tion by ribbon tubes. A ipping ring traces a so called werf in R*. A wen is a 120118-3
Klein bottle cut along a meridian circle, as shown. The wen is embedded R{.

Finally, note that Y, is exactly the purew-braid group PwB,: since each ring
has to return to its original position and orientation, each does anven number
of ips. The ips (or wens) can all be moved to the bottoms of the baid diagram at 0:19:30
strands (to the bottoms of the tubes, to the beginning of wordsht a possible cost, wClip
as speci ed by Equation (L6). Once together, they pairwise cancel each other. As 120118-3
a result, this group can be thought of as not containing wens at all. ends
2.5.5. The Relationship with u-Braids. For the sake of ignoring strand permutations, we
restrict our attention to pure braids. wClip

By Section2.3.2 for any expansionZ": PuB, ! A [ (wherePuB, isthe p g 2" jau 120222
\usual" braid group and A} is the algebra of horizontal chord diagrams

on n strands), there is a square of maps as shown on the right. Het& a
is the expansion constructed in Sectiof.4, the left vertical map a is the pyg 2~ _/pw
composition of the inclusion and projection mapPuB,! PwWB,! PwB,. starts

The map  is the induced map by the functoriality of projectivization, as notedafter Exercise

16The term wen was coined by Kanenobu and Shima in{S]
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2.13 The reader can verify that maps each chord to the sum of its two possible directed
versions.

Note that this square isnot commutative for any choice oZ" even in degree 2: the image
of a crossing undeZ" is outside the image of .

More speci cally, for any choicec of a \parenthesization" of n points, Zu
the KZ-construction / Kontsevich integral (see for examplegN3]) re- PuB, —* Aq
turns an expansionZ¢ of u-braids. As we shall see in Propositio.15 a l

for any choice ofc, the two compositions  Z¢ and Z%¥ a are \conju-

gate in a bigger space": there is a mapfrom A% to a larger space of
\non-horizontal arrow diagrams", and in this space the images ohe above composites are
conjugate. However, we are not certain that is an injection, and whether the conjugation

leaves thei-image of A" invariant, and so we do not know if the two compositions di er

merely by an outer automorphism ofA".

ZW

wB, AY
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3. w-Knots

Section Summary. In 3.1 we de ne v-knots and w-knots (long v-knots and long
w-knots, to be precise) and discussthe map ! w. In 3.2we determine the spagce of
\chord diagrams" for w-knots to be the spaceA"Y (") of arrow diagrams modulo4T
and TC relations and in 3.3 we compute some relevant dimensions. I113.5we show
that AY(") can be re-interpreted as a space of trivalent graphs modul®&TU- and
IHX-like relations, and is therefore related to Lie algebras (Sec.3.6). This allows
us to completely determine AW ("). With no diculty at all in 3.4 we construct a
universal nite type invariant for w-knots. With a bit of fur ther di culty we show

in Sec.3.7 that it is essentially equal to the Alexander polynomial.

Knots are the wrong objects for study in knot theory, v-knots are the wrong
objects for study in the theory of v-knotted objects and w-knis are the wrong objects for wClip
study in the theory of w-knotted objects. Studying uvw-knots o their own is the parallel 150222
of studying cakes and pastries as they come out of the bakery | wesure want to make
them our own, but the theory of desserts is more about the ingremhts and how they are
put together than about the end products. In algebraic knot thery this re ects through the
fact that knots are not nitely generated in any sense (hence tlyemust be made of some 3 0:11:55
more basic ingredients), and through the fact that there are vgrfew operations de ned on
knots (connected sums and satellite operations being the main eptiens), and thus most
interesting properties of knots are transcendental, or non-algeic, when viewed from within
the algebra of knots and operations on knot&3N8].
The right objects for study in knot theory, or v-knot theory or wknot theory, are thus
the ingredients that make up knots and that permit a richer algebia structure. These are
braids, studied in the previous section, and even more so tanglesidangled graphs, studied
in the following sections. Yet tradition has its place and the sweets artempting, and we
feel compelled to introduce some of the tools we will use in the dee@rd healthier study
of w-tangles and w-tangled foams in the limited but tasty arena of # baked goods of knot
theory, the knots themselves.

3.1. v-Knots and w-Knots.  v-Knots may be understood either as knots drawn on sur-
faces modulo the addition or removal of empty handle&§2, Kup] or as \Gauss diagrams"
(Remark 3.4), or simply \unembedded but wired together" crossings modulo thReidemeis-
ter moves (Ka2, Rou] and Section4.4). But right now we forgo the topological and the
abstract and give only the \planar" (and somewhat less philosophittg satisfying) de nition

of v-knots.

Figure 5. A long v-knot diagram with 2 virtual crossings, 2 positive crogs and 2 negative
crossings. A positive-negative pair can easily be cancekéty R2, and then a virtual crossing
can be cancelled using VR1, and it seems that the rest cannosib®li ed any further.
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Figure 6. The relations de ning v-knots and w-knots, along with two rélens that arenot
imposed.

De nition 3.1. A \long v-knot diagram” is an arc smoothly drawn in the plane from 1

to + 1 , with nitely many self-intersections, divided into \virtual crossings" and over- and
under-crossings, and , and regarded up to planar isotopy. A picture is worth more than a
more formal de nition, and one appears in Figuré. A \long v-knot" is an equivalence class
of long v-knot diagrams, modulo the equivalence generated by theeidemeister 3, 2 and 3
moves RZ, R2 and R3)Y, the virtual Reidemeister 1 through 3 movesVR1, VR2, VR3),
and by the mixed relations M); all these are shown in Figures. Finally, \long w-knots" are
obtained from long v-knots by also dividing by the Overcrossings Canute (OC) relations,
also shown in Figure6. Note that we never mod out by the Reidemeister 1R1) move nor
by the Undercrossings Commute relation (UC).

De nition and Warning 3.2. A \circular v-knot" is like a long v-knot, except parametrized
by a circle rather than by a long line. Unlike the case of ordinary knotsircular v-knots are
not equivalent to long v-knots. The same applies to w-knots.

De nition and Warning 3.3. Long v-knots form a monoid using the concatenation oper-
ation #. Unlike the case of ordinary knots, the resulting monoid is1ot Abelian. The same
applies to w-knots.

Remark 3.4. A \Gauss diagram" is a straight \skeleton line" along with signed directd
chords (signed \arrows") marked along it (more atfa2, GPV]). Gauss diagrams are in an
obvious bijection with long v-knot diagrams; the skeleton line of a Gas diagram corresponds
to the parameter space of the v-knot, and the arrows correspa to the crossings, with each
arrow heading from the upper strand to the lower strand, markedy the sign of the relevant
crossing:

+ +
@m
1 2 4|73 1 2 3 4 1 2 4 3

One may also describe the relations in Figuré as well as circular v-knots and other types
of v-knots (as we will encounter later) in terms of Gauss diagramsitiv varying skeletons.

17 R1 is the \spun” version of R1 | kinks can be spun around, but not remo ved outright. See Figure®6.
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L+ O\A L~ A/O R+ A\/\> R, d

Figure 7. The positive and negative under-then-over kinks (left), atite positive and
negative over-then-under kinks (right). In each pair the nega kink is the# -inverse of the
positive kink.

Remark 3.5. Since we do not mod out by R1, it is perhaps more appropriate to callinclass
of v/w-knots \framed long v/w-knots", but since we care more alout framed v/w-knots than
about unframed ones, we reserve the unquali ed name for the fmed case, and when we do
wish to mod out by R1 we will explicitly write \unframed long v/w-knots" .

Recall that in the case of \usual knots", or u-knots, dropping tle R1 relation altogether
also results in az2-extension of unframed knot theory, where the two factors & are framing
and rotation number. If one wants to talk about \true" framed knots, one mods out by the
spun Reidemeister 1 relation (Rlof Figure 6), which preserves the blackboard framing but
does not preserve the rotation number. We take the analogouspmpach here, including the
R2 relation but not R1 also in the v and w cases.

This said, note that the monoid of long v-knots is just a central ex@nsion byZ of the
monoid of unframed long v-knots, and so studying the framed casenot very di erent from
studying the unframed case. Indeed the four \kinks" of Figur@ generate a centralZ within
long v-knots, and it is not hard to show that the sequence

1! ZI1f longv-knotgg!f unframed long v-knotg ! 1 a7)
is split and exact. The same can be said for w-knots.

Exercise3.6. Show that a splitting of the sequencel(7) is given by the \self-linking" invariant
sl: flong v-knotg ! Z de ned by
X
sl(K) := signx;

crossings
x in K

whereK is a v-knot diagram, and the sign of a crossing is de ned so as to agree with the
signs in Figure?.

Remark 3.7. w-Knots are strictly weaker than v-knots | a notorious example is the Kishino
knot (e.g. [Dye]) which is non-trivial as a v-knot yet both it and its mirror are trivial as
w-knots. Yet ordinary knots inject even into w-knots, as the Wiringer presentation makes
sense for w-knots and therefore w-knots have a \fundamentgliandle" which generalizes the
fundamental quandle of ordinary knotsKaZ2], and as the fundamental quandle of ordinary
knots separates ordinary knotsJoyj].

3.1.1. A topological construction of Satoh's tubing mapFollowing Satoh B4 and using the  wClip
same constructions as in Sectiof.2.2 we can map w-knots to (\long") ribbon tubes inR* 120229
(and the relations in Figure 6 still hold). It is natural to expect that this \tubing" map

is an isomorphism; in other words, that the theory of w-knots prades a \Reidemeister

framework" for long ribbon tubes inR* | that every long ribbon tube is in the image of
25 has more
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this map and that two \w-knot diagrams" represent the same longibbon tube i they di er
by a sequence of moves as in Figufe This remains unproven.

Let :fv-knotsg!f Ribbon tori in R*gdenote the tubing map described in Sectioh.2.2
In Satoh's [Sg] is called \Tube". It is worthwhile to give a completely \topological”
de nition of . To do this we must start with a topological interpretation of v-knds.

The standard topological interpretation of v-knots (e.g.Kup]) is that they are oriented
framed knots drawri® on an oriented surface , modulo \stabilization", which is the addition
and/or removal of empty handles (handles that do not intersect ith the knot). We prefer an
equivalent, yet even more bare-bones approach. For us, a virtdanot is an oriented framed
knot drawn on a \virtual surface for ". More precisely, is an oriented surface that
may have a boundary, is drawn on , and the pair ( ; ) is taken modulo the following
relations:

Isotopies of on (meaning, in [ 5D
Tearing and puncturing parts of away from

tearing isotopy > puncturing @ ‘
@ - -

(We call a\virtual surface" because tearing and puncturing imply that we only care about
it in the immediate vicinity of ).

We can now de né® a map , de ned on v-knots and taking values in ribbon tori inR*:
given ( ; ), embed arbitrarily in R3,,  R* Note that the unit normal bundle of
in R* is a trivial circle bundle and it has a distinguished trivialization, constreted using
its positive-y-direction section and the orientation that gives each bre a linking amber
+1 with the base . We say that a normal vector to in R* is \near unit" if its norm is
between 1 and 1+ . The near-unit normal bundle of has as bre an annulus that can
be identied with [ ; ] S?! (identifying the radial direction [1 ;1+ Jwith[ ; ]in
an orientation-preserving manner), and hence the near-unit nmal bundle of de nes an
embeddingof [ ; ] St'into R* On the other hand, is embeddedin [ ; ]so

Slisembeddedin [ ; ] S and we can let ( ) be the composition
S [ ;] S'! R%
which is a torus inR*, oriented using the given orientation of and the standard orientation
of St.

A framing of a knot (or a v-knot) can be thought of as a \nearby companion” to .
Applying the above procedure to a knot and a nearby companion siftteneously, we nd
that takes framed v-knots to framed ribbon tori inR*, where a framing of a tube inR* is
a continuous up-to-homotopy choice of unit normal vector at ewe point of the tube. Note
that from the perspective of ying rings as in Sectior2.2.1a framing is a \companion ring"
to a ying ring. In the framing of ( ) the companion ring is never linked with the main

ring, but can y parallel inside, outside, above or below it and changéhese positions, as
shown below.

18ere and below, \drawn on " means \embedded in I
Brollowing a private discussion with Dylan Thurston.
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Figure 8. An arrow diagram of degree 6, a 6T relation, and an RI relation.
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We leave it to the reader to verify that ( ) is ribbon, that it is independent of the choices
made within its construction, that it is invariant under isotopies of and under tearing
and puncturing of , that it is also invariant under the \overcrossings commute” relation
of Figure 6 and hence the true domain of is w-knots, and that it is equivalent to Satoh's
tubing map.

3.2. Finite Type Invariants of v-Knots and w-Knots. Much as for v-braids and w-
braids (Section2.3) and much as for ordinary knots (e.g.BN1]) we de ne nite type in-
variants for v-knots and for w-knots using an alternation schemwith ! and

! . That is, we extend any Abelian-group-valued invariant of v- or w-Rots to v- or
w-knots also containing \semi-virtual crossings” like and using the above assignments,
and we declare an invariant to be \of typem" if it vanishes on v- or w-knots with more
than m semi-virtuals. As for v- and w-braids and as for ordinary knots, sl invariants
have an \mth derivative", their \weight system", which is a linear functional on the space
ASY(") (for v-knots) or AS¥(") (for w-knots). We turn to the de nitions of these spaces,
following [GPV, BHLRY]:

De nition 3.8.  An \arrow diagram" is a chord diagram along a long line (called \the
skeleton"), in which the chords are oriented (hence \arrows"). A example is in Figure8.
Let DY(") be the space of formal linear combinations of arrow diagrams. LAY(") be DV(")
modulo all \6T relations". Here a 6T relation is any (signed) combinatia of arrow diagrams
obtained from the diagrams in Figure3 by placing the 3 vertical strands there along a long
line in any order, and possibly adding some further arrows in betweeAn example is in
Figure 8. Let A®Y(") be the further quotient of AV(") by the RI relation, where the RI (for
Rotation number Independence) relation asserts that an isolatetrow pointing to the right
equals an isolated arrow pointing to the left, as shown in Figuré®.

20 The Xl relation of [ BHLR] follows from RI and need not be imposed.
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I
Figure 9. The TC and the4T relations for knots.

Let AY(") be the further quotient of AV(") by the \Tails Commute" (TC) relation, rst
displayed in Figure4 and reproduced for the case of a long-line skeleton in FigueLikewise,
let ASY(") := ASV(")=TC= AY(")=RI. Alternatively, noting that given TC two of the terms
in 6T dqop out, AV (") is the space of formal linear combinations of arrovy diagrams modulo

TC and 4T relations, displayed in Figurest and 9. Likewise,ASW = DV=T C:4T;RI. Finally,
gradeD"(") and all of its quotients by declaring that the degree of an arrow dgeam is the
number of arrows in it.

As an example, the space8V:sV"W:SW (") restricted to degrees up to 2 are studied in detail
in Section7.2

In the same manner as in the theory of nite type invariants of ordiary knots (see es-
pecially BN1, Section 3], the space#& (") carry much algebraic structure. The obvious
juxtaposition product makes them into graded algebras. The pratt of two nite type
invariants is a nite type invariant (whose type is the sum of the type of the factors); this
induces a product on weight systems, and therefore a co-protuon arrow diagrams. In
brief (and much the same as in the usual nite type story), the c@roduct D of an arrow
diagram D is the sum of all ways of dividing the arrows irD between a \left co-factor" and
a \right co-factor”. In summary,

Proposition 3.9.  AY("), AsV("), AY("), and AS"(") are co-commutative graded bi-algebras.

By the Milnor-Moore theorem MM ] we nd that AYSV"WSW(") are the universal enveloping
algebras of their Lie algebras of primitive elements. Denote thesedded) Lie algebras by
pVvsvwsw () “regpectively.

When we grow up we'd like to understandA¥(") and AsV("). At the moment we know
only very little about these spaces beyond the generalities of Pragtion 3.9. In the next
section some dimensions of low degree partsAfsV(") are displayed. Also, given a nite
dimensional Lie bialgebra and a nite dimensional representation tineof, we know how to
construct linear functionals onAY(") (one in each degree)Hav, Leu] (but not on ASY(™)).
But we don't even know which degreen linear functionals onA®'(") are the weight systems of
degreem invariants of v-knots (that is, we have not solved the \Fundamerdl Problem" [BS]
for v-knots).

As we shall see below, the situation is much brighter fak"=s"(").
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3.3. Some Dimensions. The table below lists what we could nd aboutAY and A" by
crude brute force computations in low degrees. We list degrees @dtgh 7. The spaces we
study are A ("), AS ("), A" (") which isA (") moded out by \isolated" arrows?!, P (")
which is the space of primitives ilA ("), andA ( ), A® ( ),andA" ( ), which are the
same asA ("), A® ("), and A" (") except with closed knots (knots with a circle skeleton)
replacing long knots. Each of these spaces we study in three vatgnthe \v' and the \w"
variants, as well as the sual knots \u" variant which is here just for comparison. We also
include a row \dimG,Lie (")" for the dimensions of \Lie-algebraic weight systems". Those
are explained in the u and v cases IBN1, Hav, Leu], and in the w case in SectiorB.6.

See Section7.2
m _ 0 1 2 3 4 S 6 | 7 |Comments
dimG,A (") udvv 1111 1122 227 31727 6111239 10;1;;13 12(13? 3%? 31;11;25
dim GyLie (") uvjvv 1j11 1&2 21'17 3j727 6j12128 1&1')? 133)? 32é? 1j56
dim G,AS (") uvjv" 111 j11 1'23 1'310 j552 j7298 il? jls? 73182
dim G, A" (") uvjvv 1j11 O(J')O lj12 1jl7 3j242 4jé246 9Lj1? 1421'? 3%;]1%
dimGnP (") uvjvv Oéo 1%2 1j14 1j115 2j182 3ij2 5lj? 8{'? 1j311
dmG,A ( ) uvjvv 11'11 1i1 2j12 3j15 6j119 10j177 191j? 3311'? 1j312
dim G, AS ( )uvjvv jll jll jll jlz j16 j123 jl? jl? 7j32
dim G, A" () uvjvv 1j11 O(j)o 1%0 1(1')1 3(1')4 4j017 93? 1481'? 1j312

Comments 3.10 (1) Much more is known computationally on the u-knots case. See

especially BN1, BN4, Kn, AS].

(2) These dimensions were computed by Louis Leung and DBN usingr@gram available
at [WKOO, \Dimensions"].

(3) As we shall see in Sectiof3.5, the spaces associated with w-knots are understood to
all degrees.

(4) To degree 4, these numbers were also veri ed bytKOO, \Dimensions"].

(5) The next few numbers in these sequences are 67, 97, 139, 292.

(6) These dimensions were computed by Louis Leung and DBN usingr@gram available
at [WKOO, \Arrow Diagrams and gl(N)"]. Note the match with the row above.

(7) There is no \s" quotient in the \u" case.

(8) The next few numbers in this sequence are 22, 30, 42, 56, 77.

(9) These numbers were computed by\JKOO, \Dimensions"]. Contrary to the A" case,
A" is not the quotient of AV by the ideal generated by degree 1 elements, and

21Thatis, A" (")is A (") modulo \Framing Independence” (Fl) relations [BN1], with the isolated arrow
taken with either orientation. It is the space related to nite type in variants of unframed knots, on which
the rst Reidemeister move is also imposed, in the same way a8 (") is related to framed knots.
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therefore the dimensions of the graded pieces of these two sgacannot be deduced
from each other using the Milnor-Moore theorem.

(10) The next few numbers in this sequence are 7,8,12,14,21.

(11) These dimensions were deduced from the dimensionsGyfAY(") using the Milnor-
Moore theorem.

(12) Computed by WWKOO, \Dimensions"]. Contrary to the A" case AY( ), A®Y( ), and
A" ( ) arenotisomorphic toAY("), AsY("), and A" (") and separate computations
are required.

3.4. Expansions for w-Knots.  The notion of \an expansion” (or \a universal nite type
invariant") for w-knots (or v-knots) is de ned in complete analogywith the parallel notion for
ordinary knots (e.g. BN1]), except replacing double points () with semi-virtual crossings
( and ) and replacing chord diagrams by arrow diagrams. Alternatively, it ishe same as
an expansion for w-braids (De nition2.11), with the obvious replacement of w-braids by w-
knots. Just as in the cases of ordinary knots and/or w-braids, thexistence of an expansion
Z: fw-knotsg ! A SY(") is equivalent to the statement \every weight system integrates"
i.e., \every degreem linear functional on A3"(") is the mth derivative of a type m invariant
of long w-knots".

wClip
120259 Theorem 3.11. There exists an expansio : f w-knotgy ! A sW(").
endas
Proof. It is best to de ne Z by an example, and it is best to display the example only as
a picture:
wClip e e
120307 _ e’ _ e’ e
Sl o
1 2 3 4 1 2 4 3
starts It is clear how to de ne Z(K) in the general case | for every crossing inK place an

exponential reservoir of arrows (compare with1{)) next to that crossing, with the arrows
heading from the upper strand to the lower strand, taking positivareservoirs €*, with

a symbolizing the arrow) for positive crossings and negative reseing (e 2) for negative
crossings, and then tug the skeleton until it looks like a straight lineNote that the Tails
Commute relation in AS¥ is used to show that all reasonable ways of placing an arrow
reservoir at a crossing (with its heading and sign xed) are equivalen

el
\ = = =
N ¢ ¢
The same proof that shows the invariance & in the braids case (Theoren®.15 works

here as wel?, and the same argument as in the braids case shows the universabfyZ .

Remark 3.12 Using the language of Gauss diagrams (RemaBkd) the de nition of Z is even
simpler. Simply map every positive arrow in a Gauss diagram to a positie?) reservoir,

227 tiny bit of extra care is required for invariance under R13: it easily follows from RI.
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Figure 10. A degree 11 w-Jacobi diagram on a long line skeleton. It has &etke line at

the bottom, 13 vertices along the skeleton (of which 2 are indognand 11 are outgoing),
9 internal vertices (with only one explicitly marked with \I&f( 1) and \right" ( r)) and one

bubble. The ve quadrivalent vertices that seem to appear irettliagram are just projection
artifacts and graph-theoretically, they don't exist.

and every negative one to a negativee(?) reservoir:

+ o+ e  e?

An expansion (a universal nite type invariant) is as interesting as & target space, for it
is just a tool that takes linear functionals on the target space tonite type invariants on its
domain space. The purpose of the next section is to nd out how intesting are our present
target space, AS"("), and its \parent”, AY(").

3.5. Jacobi Diagrams, Trees and Wheels.  In studying A% (") we again follow the model
set by ordinary knots. Compare the following de nitions and theonam with [BN1, Section 3].

De nition 3.13. A \w-Jacobi diagram on a long line skeleton® is a connected graph made
of the following ingredients:

A\long" oriented \skeleton" line. We usually draw the skeleton line a bitthicker for
emphasis.

Other directed edges, usually called \arrows".

Trivalent \skeleton vertices" in which an arrow starts or ends on tle skeleton line.
Trivalent \internal vertices" in which two arrows end and one arrowbegins. The
internal vertices are \oriented" | of the two arrows that end in an internal vertices,
one is marked as \left" and the other is marked as \right". In realitywhen a diagram
is drawn in the plane, we almost never mark \left" and \right", but instead assume
the \left" and \right" inherited from the plane, as seen from the ougoing arrow from
the given vertex.

Note that we allow multiple arrows connecting the same two verticegshough at most two
are possible, given connectedness and trivalence) and we allow \blgs" | arrows that
begin and end in the same vertex. Note that for the purpose of detnining equality of
diagrams the skeleton line is distinguished. The \degree" of a w-Jduadiagram is half the
number of trivalent vertices in it, including both internal and skeletm vertices. An example
of a w-Jacobi diagram is in FigurelO.

23What a mouthful! We usually short this to \w-Jacobi diagram", or so metimes \arrow diagram" or just
\diagram".
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Figure 11. The STU1., and TC relations with their \central edges" markeel
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I !
Figure 12. The AS andIHX relations.

De nition 3.14. Let D"(") be the graded vector space of formal linear combipations of
IW-Jacobi diagrams on a long line skeleton, and leAYt (") be D"'(") modulo the'§TU1,
"STU,, and TC relations of Figurel1l Note that that each diagram appearing| in eaclsTU

relation has a \central edge“e which can serve as an \identifying name" for thatST U. Thus
given a diagramD with a marked ed]gee which is either on the skeleton or which contacts

the skeleton, there is an unambiguouST U relation \around" or \along" the edge e.

We like to call the following theorem \the bracket-rise theqrem", foit justi es the in-

troduction of internal vertices, and as should be clear from th8T U relations and as will
become even clearer in Sectidh6, internal vertices can be viewed as \brackets". Two other
bracket-rise theorems are Theorem 6 oBN1] and Ohtsuki's theorem, Theorem 4.9 ofHo].

Theorem 3.15 (bracket-rise). The obvious inclusion : DV(") ! D Y (") of arrow diagrams
(De nition 3.8) into w-Jacobi diagrams descend§ to the IquotieJt\tW(") and induces an iso-
morphism : AY(") A "Y("). Furthermore, the AS and'IHX relations of Figure 12 hold

in AVt(").

Proof. The proof, joint with D. Thurston, is modelled after the proof oflTheorem 6
of [BINl]. To show that descepds tAA™(") we just need to §how that inAY' ("), 4T follows

from STU;». Indeed, applyingT U, along the edgee; and ST U, along e, in the picture

below, we get the two sides AT :

(18)




The fact that is surjective is obvious; indeed, for diagrams id"'(") that have no internal
Ivertices there is nothing to show, for they are really iA“("). Further, by repeated use of

"STU,, relations, all internal vertices in any diagram inA“!(") can be removed (remember
that the diagrams in A"'(") are always connected, and in particular, if they have an internal
vertex they must have an internal vertex connected by an edge the skeleton, and the latter
vertex can be removed rst).

To complete the proof that is an isomorphism it is enough to show that the \elimination
of internal vertices” procedure of the last paragraph is well deed | that its output is
independent of the order in whichST U,., relations are applied in order to eIiminatle internal

vertices. Indeed, this done, the elimination map would by de nition disfy the ST Uy,
relations and thus descend to a well de ned inverse for
On diagrams with just one intelrnal vertex, Equation (8) shows that all ways of eliminating

that vertex are equivalent modulo4T relations, and hence the elimination map is well de ned
on such diagrams.

Now assume that we have shown that the elimination map is well de neoh all diagrams
with at most 7 internal vertices, and letD be a diagram with 8 internal vertice$*. Let e
and €” be edges irD that connect the skeleton oD to an internal vertex. We need to show
|that any elimination process that begins with eliminatinge yields the same answer, modulo
4T, as any elimination process that begins with eliminating®. There are several cases to
consider.

Case |. e and €’ connect the skeleton tadi erent internal vertices of \K Y

D. In this case, after eliminatinge we get a signed sum of two diagrams e ¢

with exactly 7 internal vertices, and since the elimination process isal

de ned on such diagrams, we may as well continue by eliminatira)in each of those, getting
a signed sum of 4 diagrams with 6 internal vertices each. On the othieand, if we start

by eliminating €° we can continue by eliminatinge, and we get thesamesigned sum of 4
diagrams with 6 internal vertices.

Case Il. e and €° are connected to the same internal vertex of D, /\ \K
e e 00

yet some other edg&®exists in D that connects the skeleton oD to
some other internal vertexv®in D. In that case, use the previous case
and the transitivity of equality: (elimination starting with e)=(elimination starting with
e"Y=(elimination starting with €9.

Case Ill. Case lll is what remains if neither Case | nor Case Il
hold. In that case, D must have a schematic form as on the right,
with the \blob" not connected to the skeleton other than viae or f
e’ yet further arrows may exist outside of the blob. Letf denote
the edge connecting the blob tee and €% The \two in one out"
rule for vertices implies that any part of a diagram must have an exss of incoming edges
over outgoing edges, equal to the total number of vertices in thaiagram part. Applying
this principle to the blob, we nd that it must contain exactly one vertex, and thatf and
thereforee and €’ must all be oriented upwards.

Y

247" here is a symbol that denotes an arbitrary natural number greater than 1 and \8" denotes 7 + 1.
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IHX . Algebraically, these are restatements of the anti-symmetry of

D= & > Dr= N wk:@

Figure 13. The left-arrow diagramD |, the right-arrow diagramDg and the k-wheelw.

We leave it to the reader to verify that in this case the two ways of @
applying the elimination Iprocedure,e and thenf or e’and thenf , yield

the same answer moduldT (in fact, that answer is 0).
We also leave it to the reader to verify thatST U, implies AS and

f

e e0

the bracket and of Jacobi's identity: if k;y] := xy yx, then 0 =
iyl +[y;x] and [x; [y; 2]l = [[x;y]; 2] [[x; z]; yl.

Note that A"t(") inherits algebraic structure fromA"Y("): it is an algebra by concatenation
of diagrams, and a co-algebra with (D), for D 2 D" ("), being the sum of all ways of
dividing D between a \left co-factor” and a \right co-factor” so that conrected components of
D S are kept intact, whereS is the skeleton line oD (compare with BN1, De nition 3.7]).

As A%(") and A" (") are canonically isomorphic, from this point on we will not keep the
distinction between the two spaces.

One may add the RI relation to the de nition of A"*(") to get a spaceAs"'("), or the FI
relation to get A™!("). The statement and proof of the bracket rise theorem adapt witno
di culty, and we nd that ASY(") = ASW{(") and A™ (") = A™(").

Theorem 3.16. The bi-algebraA% (") is the bi-algebra of polynomials in the diagranD,,
Dgr and wg (for k 1) shown in Figure 13, wheredegD, = degDgr =1 and degwy = Kk,
subject to the one relatiorw; = D, Dg. Thus A%(") has two generators in degree 1 and
one generator in every degree greater than 1, as stated in tBet 3.3.

Proof. (sketch). Readers familiar with the diagrammatic PBW theoremEgN1, Theorem 8]
will note that it has an obvious analogue for theA"Y (") case, and that the proof in BN1]
carries through almost verbatim. Namely, the spac&"(") is ison]orphic to a spaceBY

of \unitrivalent diagrams" with symmetrized univalent ends moduloAS and IHX . Given
the \two in one out" rule for arrow diagrams in A% (") (and hence inB") the connected
components of diagrams irB" can only be trees or wheels. Trees vanish if they have more
than one leaf, as their leafs are symmetric while their internal verts are anti-symmetric,
soBY is generated by wheels (which become thg's in A¥(")) and by the one-leaf-one-root
tree, which is simply a single arrow, and which pecomes the averageqf and Dg. The
relation w; = D Dg is then easily veri ed usingST U,.

One may also argue directly, without using sophisticated tools. In sit, let D be a diagram
in AY(") and S is its skeleton. ThenD § may have several connected components, whose

\legs" are intermingled alongS. Using the ST U relations these legs can be sorted (at a cost
of diagrams with fewer connected components, which could haveebetreated earlier in an
inductive proof). At the end of the sorting procedure one can sdbat the only diagrams
that remain are our declared generators. It remains to show thatur generators are linearly
independent (apart for the relationw; = D Dg). For the generators in degree 1, simply

write everything out explicitly in the spirit of Section 7.2.2 In higher degrees there is only
34



one primitive diagram in each degree, so it is enough to show thak 6 O for every k. This
can be done \by hand", but it is more easily done using Lie algebraic ttsoin Section3.6.

Exercise 3.17. Show that the bi-algebraA™ (") (see Sectior.3) is the bi-algebra of polyno-
mials in the wheel diagramsv, (k  2), and that A3"(") is the bi-algebra of polynomials in
the same wheel diagrams and an additional generatD, := D_ = Dg.

Theorem 3.18. In AY( ) all wheels vanish and hence the bi-algebd’( ) is the bi-
algebra of polynomials in a single variable, = Dg.

|
Proof. This is Lemma 2.7 of Na]. In short, a wheel inA¥( ) can be reduced usingT U,
foa di erence of trees. One of these trees has two adjoining leafisd hence is 0 by TC and

AS. In the other two of the leafs can be cqmmuted \around the circlelising TC until they

are adjoining and hence vanish by TC andS. A picture is worth a thousand words, but
sometimes it takes up more space.

Exercise 3.19 Show that As¥( )= AY( )yet A™( ) vanishes except in degree 0.

The following two exercises may help the reader to develop a bettefekl” for AY(")
and will be needed, within the discussion of the Alexander polynomiaégpecially within
De nition 3.32.

Exercise3.2Q Show that the \Commutators Commute” (CC) relation, shown

on the right, holds in A%("). (Interpreted in Lie algebras as in the next >XZ< =0 \Clip
section, this relation becomesXy]; [z;w]] = 0, and hence the name \Com- ! 120404
mutators Commute™). Note that the proof of CC depends on theleleton

having a single component; later, when we will work witl\"-spaces with more complicated

skeleta, the CC relation will not hold.

hair at 0:58:42
Exercise3.21 Show that \detached wheels" and \hairy L W
Y's" make sense imlA"("). As on the right, a detached v % /\,Z
wheel is a wheel with a number of spokes, and a hairy

Y is a combinatorial Y shape with further \hair" on its

trunk (its outgoing arrow). It is speci ed where the trunk and the leafs of theY connect to
the skeleton, but it is not speci ed where the spokes of the wheeh@ where the hair on the
Y connect to the skeleton. The content of the exercise is to showathmodulo the relations
of AW("), it is not necessary to specify this further information: all ways foconnecting the
spokes and the hair to the skeleton are equivalent. Like the previewexercise, this result

depends on the skeleton having a single component.

Remark 3.22 In the case of classical knots and classical chord diagrams, Jacdiagrams
have a topological interpretation using the Goussarov-Habiro callus of claspers Gou2,
Hab]. In the w case a similar such calculus was developed by Watanabe Via]. Various
related results are at HKS, HS].

3.6. The Relation with Lie Algebras. The theory of nite type invariants of knots is

related to the theory of metrized Lie algebras via the space of chord diagrams, as explained wClip
in [BN1, Theorem 4, Exercise 5.1]. In a similar manner the theory of nite typ invariants 120314
of w-knots is related to arbitrary nite-dimensional Lie algebras (o equivalently, to doubles

of co-commutative Lie bialgebra) via the spacA% (") of arrow diagrams.
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3.6.1. Preliminaries. Given a nite dimensional Lie algebrag let 1g:= g o g be the semi-
direct product of the dualg of g with g, with g taken as an Abelian algebra and withy
acting ong by the usual coadjoint action. In formulae,

lg=f("x):"' 29;x2dgg,

[ 5X); (C2X2)] =(X1" 2 X2' 1;[X1; X2]):

In the case whereg is the algebraso(3) of in nitesimal symmetries of R3, its dual g is
itself R® with the usual action ofso(3) on it, and | g is the algebraR3o so(3) of in nitesimal
ane isometries of R3. This is the Lie algebra of the Euclidean group of isometries &,
which is often denotedl SO (3). This explains our choice of the namég.

Note that if g is a co-commutative Lie bialgebra then g is the \double" of g [Drl]. This
is a signi cant observation, for it is a part of the relationship betwee this paper and the
Etingof-Kazhdan theory of quantization of Lie bialgebrasgK]. Yet we will make no explicit
use of this observation below.

In the construction that follows we are going to construct a map é&m A% to U(l g), the
universal enveloping algebra dfg. Note that a map A" U (I g) is \almost the same" as a
map AY 1'U (I g), in the following sense. There is an obvious quotient mgm AY 1 A S%,
and p has a one-sided inversgé : AsY I A % de ned by

s k
Foy=" L7l sto) i
k=0 '
Here S, denotes the map that sends an arrow diagram to the sum of all wag$ deleting a
left-going arrow, andw; denotes the 1-wheel, as shown in Figute3. The reader can verify
that F is well-de ned, an algebra- and co-algebra homomorphism, and thpt F = idasw.

3.6.2. The Construction. Fixing a nite dimensional Lie algebra g we construct a map
Tg": A" 1'U (Ig) which assigns to every arrow diagranD an element of the universal
enveloping algebraJ(l g). As is often the case in our subject, a picture of a typical example
is worth more than a formal de nition:

contract

B 99 B
A 2\ [
— / \ f% \\ —49 9 g 9 9 g —= U(g
g g g g g g

In short, we break up the diagramD into its constituent pieces and assign a copy of
the structure constants tensorB 2 g g g to each internal vertexv of D (keeping
an association between the tensor factors ig g g and the edges emanating from
v, as dictated by the orientations of the edges and of the vertex itself). We assign the
identity tensor in g g to every arrow in D that is not connected to an internal vertex,
and contract any pair of factors connected by a fully internal anw. The remaining tensor
factors@ 9 g g g g inourexamples) are all along the skeleton and can thus be
ordered by the skeleton. We then multiply these factors to get arugput T;"(D) in U(I g).

It is also useful to restate this construction given a choice of a bas Let (X;) be a basis
ofgand let (" ') be the dual basis ofy , so thap’ '(x;) = |, and let b denote the structure

constants ofg in the chosen basis: X; x;] = d} Xx. Mark every arrow in D with lower
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case Latin letter from within fi;j; k;::: g*°>. Form a product Pp by taking oneb factor for
each internal vertexv of D using the letters marking the edges around for , and and
by taking onex or' factor for each skeleton vertex oD, taken in the order that they
appear along the skeleton, with the indices and dictated by the edge markings and with
the choice between factors ig and factors ing dictated by the orientations of the edges.
Finally let T,"(D) be the sum ofPp over the indicesi;j;k;::: running from 1 to dimg:

bf k i
. . 4 g .
AN KON N s P e 2o a9
- = = = — - ipkhmn o =1

The following is easy to verify (compare withBBN1, Theorem 4, Exercise 5.1]):

Proposition 3.23. The above two de nitions of T' agree, are independent of the choices
made within them, and respect all the relations de ning\".

While we do not provide a proof of this proposition here, it is worthwhilgo state the
Icorrespondence between the relations de niquw and the Lie algebraic informatilon inU(l g):
(AS is the antisymmetry of the bracket ofg, IHX is the Jacobi identity of g, STU,; and
'STU, are the relations ki; x;] = xiX;  XjX; andl[' Bxl= % Xt tinU(lg), TCis the
fact that g’ is taken as an Abelian algebra, andT is the fact that the identity tensor in
g gis g-invariant.

3.6.3. Example: The 2 Dimensional Non-Abelian Lie Algebralet g be the Lie algebra with
two generatorsx,., satisfying X1; X2] = X», so that the only non-vanishing structure constants
b ofgarekf, = 1B, = 1. Let '' 2 g be the dual basis ofk;; by an easy calculation,
we nd that in | g the element' ! is central, while k;;'?]= '2and [xp;'?]="1 We
calculate T/*(D.), T4"(Dr) and Ty"(wg) using the \in basis" technique of Equation (9).
The outputs of these calculations lie inJ(I g); we display these results in a PBW basis in
which the elements ofy precede the elements dd:

1 2 v 1 '

TgW(DL) Xo+[X2;" 21 =" Iy + " Xt g
Ty'(Dr) = X1+ %X (20)
W) = (¢

For the last assertion above, note that all non-vanishing structe f?j
2 2 2
1 1 1 1

Xi' T X P = X+

constantsd} in our case havek = 2, and therefore all indices corre-
sponding to edges that exit an internal vertex must be set equabt
2. This forces the \hub" of wy to be marked 2 and therefore the legs '
to be marked 1, and thereforav, is mapped to ( 1)X.

Note that the calculations in (20) are consistent with the relationD, Dgr = w; of  wClip
Theorem 3.16 and that they show that other than that relation, the generatos of AY are 120314
linearly independent. ends

T T T T

25The supply of these can be made inexhaustible by the addition of nunmical subscripts.
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Figure 14. A long 8,7, with the span of crossingg3 marked. The projection is as in Brian
Sanderson's garden. Se¥/KOQ)/ SandersonsGarden.html.

3.7. The Alexander Polynomial. Let K be a long w-knot, letZ(K) be the invariant
of Theorem3.11 Theorem 3.27 below asserts that apart from self-linking,Z (K) contains
precisely the same information as the Alexander polynomi#(K) of K (de ned below).
But we have to start with some de nitions.

De nition 3.24. Enumerate the crossings dk from 1 to n in some arbitrary order. For 1

] n, the \span" of crossing #i is the connected open interval along the line parametrizing
K between the two timesK \visits" crossing #i (see Figurel4). Form a matrix T = T(K)
with T the indicator function of \the lower strand of crossing # is within the span of
crossing #" (so Ty is 1 if for a giveni;j the quoted statement is true, and O otherwise). Let
si be the sign of crossing #(( ; ; ; ;+;+;+;+) for Figure 14), let d, be +1 if K visits
the \over" strand of crossing #i before visiting the \under" strand of that crossing, and let
d = 1 otherwise (( ;+; ;+; ;+; ;+)for Figure 14). Let S = S(K) be the diagonal
matrix with S; = s;d;, and for an indeterminateX , let X S denote the diagonal matrix with
diagonal entriesX Si%. Finally, let A(K) be the Laurent polynomial inZ[X; X ] given by

AK)X):=det | +T(1 X 95) : (21)
Example 3.25 For the knot diagram in Figure 14,
1
0 1 01000 000 0o 11 X1 X 1 X1X 0 1 X 0
8%%%%8%8 0 100 000 O 0 1 1X 1! 0o 1X 0 0 0
01001000 0010 O0O0O0O 01 X 1 0 1 X 0 0 0
T=B01001010¢. S=000 1 0 0 0 0k. and A=OZI.X 0 1 1 X 0 1 X 0
8%8%8%%1 0000 10 0 OC’ 01 X 0 1 X 1 1X 11x1x?1?
0000 O1O0O0
88918188 0000 00 10 00 0 1x 0 1x: i o
00000001 0 0 0 1X 0 1Xx 1! o 1
2

The last determinant equals X3+4X? 8X +11 8X '+4X X 3, the Alexander

polynomial of the knot 8 (e.g. [Rol]).

Theorem 3.26. (P. Lee, [Leed]) For any (classical) knotK , A(K) is equal to the normalized
Alexander polynomial[Rol] of K.

The Mathematica notebook YWKOO, \wA"] veri es Theorem 3.26for all prime knots with
up to 11 crossings.

The following theorem asserts thaZ (K) can be computed fromA(K) (Equation (22))
and that modulo a certain additional relation and with the appropriate identi cations in
place,Z(K) is A(K) (Equation (23)).
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Theorem 3.27. (Proof in Section 3.8). Let x be an indeterminate, let & be self-linking as
in Exercise 3.6, let D5 := D = Dr and wi be as in Figurel3, and letw: QXXK! A " be
the linear map de ned byx* 7! w,. Then for a w-knotK,

Z(K)= FprAsw (le(K)DA; FXpASW w lo?ZQJxKA(K)(eX) }; (22)

sl coded in arrows main part: Alexander coded in wheels

where the logarithm and inner exponentiation are computed formal power series inQJxK
and the outer exponentiations are likewise computed A",

Let Areduced ha ASW modulo the additional relationsD = 0 and é @ &
W W, = W, for k;1 8 1. The quotient A% can be identi ed =
with vector space of (in nite) linear combinations ofwy's (with Wz o W = W

k 6 1). Identifying the k-wheelw, with x¥, we see thatArduced s the space of power series
in X having no linear terms. Note by inspecting41) that A(K)(€*) never has a term linear

in x, and that modulo ww; = wi., the exponential and the logarithm in @2) cancel each
other out. Hence within Areduced,

Z(K)= A YK)(e): (23)

Remark 3.28 In [HKS] K. Habiro, T. Kanenobu, and A. Shima show that all coe cients of
the Alexander polynomial are nite type invariants of w-knots, andin [HS] K. Habiro and
A. Shima show that all nite type invariants of w-knots are polynomids in the coe cients of
the Alexander polynomial. Thus Theoren3.27is merely an \explicit form" of these earlier
results.

wClip
3.8. Proof of Theorem 3.27. We start with a sketch. The proof of Theorem3.27 can be 120404
divided in three parts: di erentiation, bulk management, and comptation. ends
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Di erentiation. Both sides of our goal, Equation Z2), are exponential in nature. When
seeking to show an equality of exponentials it is often bene cial to oypare their derivatives®.
In our case the useful \derivatives" to use are the \Euler operat™ E (\multiply every term
by its degree", an analogue of 7! xf° dened in Section 3.8.1), and the \normalized
Euler operator" Z 7! EZ := Z EZ, which is a variant of the logarithmic derivativef 7!
x(logf)?= xf &f. SinceE is one to one (SectiorB.8.1) and since we know how to apply
E to the right hand side of Equation @2) (Section 3.8.]), it is enough to show that with
B := T(exp( xS) 1) and suppressing the xed w-knotK from the notation,

EZ=2Z sl Da wxtr (I B) TSexp( xS) in ASW: (24)

Bulk Management.  Next we seek to understand the left hand side of2{). Z is made
up of \quantities in bulk": arrows that come in exponential \resenoirs". As it turns out,
EZ is made up of the same bulk quantities, but also allowing for a single ndHk \red
excitation" (compare with Ee* = x €*; the \bulk" € remains, and single \excited red"
X gets created). We wish manipulate and simplify that red excitation. Tis is best done
by introducing a certain module,lIAM g, the \In nitesimal Alexander Module" of K (see
Section3.8.9). The elements oflAM ¢ can be thought of as names for \bulk objects with a
red excitation", and hence there is an \interpretation map" : IAM ¢ ' A ¥, which maps
every \name" into the object it represents. There are three sp&l elements inlAM ¢ : an
element , which is the name ofEZ (that is, ( ) = EZ), the element 5 which is the
name ofDy Z (so ( o) = Da Z), and an element! ; which is the name of a \detached"
1-wheel that is appended t&Z. The latter can take a coe cient which is a power ofx, with
(xk1 1) = w(xk*1) Z = (Z times a (k+1)-wheel). Thus it is enough to show that inlAM ,

=sl o tr (I B)TSX S 1y with X=¢€: (25)

Indeed, applying to both sides of the above equation, we get Equatior24) back again.
Computation. Last, we show in Sectior3.8.3that (25) holds true. This is a computation
that happens entirely inlAM ¢ and does not mention nite type invariants, expansions or
arrow diagrams in any way.

3.8.1. The Euler Operator. Let A be a completed graded algebra with unit, in which all
degrees are 0. De ne a continuous linear operatorE: A! A by setting Ea = (deg a)a
for homogeneousa 2 A. In the caseA = QXK we haveEf = xf° the standard \Euler
operator”, and hence we adopt this name fdE in general.

We say that Z 2 A is a \perturbation of the identity" if its degree O piece is 1. Such &
is always invertible. For such aZ, setEZ := Z ' EZ, and call the thus (partially) de ned
operator E: A'! A the \normalized Euler operator". From this point on when we write
EZ for someZ 2 A, we automatically assume thatZ is a perturbation of the identity or
that it is trivial to show that Z is a perturbation of the identity. Note that for f 2 QJK
we haveEf = x(logf)° soE is a variant of the logarithmic derivative.

Claim 3.29. FE is one to one.

Proof. AssumeZ; 6 Z, and let d be the smallest degree in which they dier. Then
d > 0 and in degreed the dierence EZ, EZ, isdtimes the dierenceZ, Z,, and hence
EZ,6 EZ,.

26Thanks, Dylan.
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Thus in order to prove our goal, Equation 22), it is enough to computeE of both sides
and to show the equality then. We start with the right hand side of 22); but rst, we need
some simple properties oE and E. The proofs of these properties are routine and hence
they are omitted.

Proposition 3.30. The following hold true:
(1) E is a derivation: E(fg) = (Ef )g+ f (EQ).
(2) If Z, commutes withZ,, then E(Z,Z,) = EZ, + EZ,.
(3) If z commutes withEz, then Ee* = €/(Ez) and Ee* = Ez.
(4) If w: ATA is a morphism of graded algebras, then it commutes withand E.

Let us denote the right hand side of Z2) by Z,(K). Then by the above proposition,
remembering (Theorem3.16) that A®" is commutative and that degD, = 1, we have

EZ,K)= sl Da W(EIOgAK)E) = sl Da w x-logA(K)(e)

dx
The rest is an exercise in matrices and di erentiation A(K) is a determinant (21), and in
general, X logdetM)=tr M *4M . SowithB=T(e* 1[)(soM =1 B), we have
d
EZ.(K)=sl Da+w xtr (I B) 1&5 =sl Da w xtr (I B) TSe* ;

as promised in Equation 24).

3.8.2. The In nitesimal Alexander Module. Let K be a w-knot diagram. The In nitesimal
Alexander Module IAM ¢ of K is a certain module made from a certain spadAM ﬂ of
pictures \annotating” K with \red excitations" modulo some pictorial relations that indicate
how the red excitations can be moved around. The spat&M 2 in itself is made of three
pieces, or \sectors". The \A sector" in which the excitations areed arrows, the \Y sector"
in which the excitations are \red hairy Y-diagrams", and a rank 1 \W ®ctor" for \red hairy
wheels". There is an \interpretation map" - : IAM 2 ! A " which descends to a well de ned
(and homonymous) : IAM ¢ ' A Y. Finally, there are some special elementsand , that
live in the A sector ofIAM & and! ; that lives in the W sector.

In principle, the description of IAM % and of IAM ¢ can be given independently of the
interpretation map , and there are some good questions to ask abol&M ¢ (and the
special elements in it) that are completely independent of the interptation of the elements
of IAM ¢ as \perturbed bulk quantities" within ASY. Yet IAM ¢ is a complicated object
and we fear its de nition will appear completely arti cial without its int erpretation. Hence
below the two de nitions will be woven together.

IAM ¢ and may equally well be described in terms df or in terms of the Gauss diagram
of K (Remark 3.4). For pictorial simplicity, we choose to use the latter; so leG = G(K) be
the Gauss diagram oK . It is best to read the following de nition while at the same time
studying Figure 15.

De nition 3.31. Let R be the ring Z[X; X ] of Laurent polynomials inX, and let R; be
the subring of polynomials that vanish atX = 1 (i.e., whose sum of coe cients is 0j’. Let

2R, is only very lightly needed, and only within De nition 3.32 In particular, all that we say about
IAM g that does not concern the interpretation map is equally valid with R replacing R;.
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Figure 15. A sample w-knotK , it's Gauss diagrants, and one generator from each of the
A, Y, and W sectors ofAM £ . Red parts are marked with the word \red".

IAM § be the direct sum of the following three modules (which for the pure of taking the
direct sum, are all regarded aZ-modules):

(1) The \A sector" is the free Z-module generated by all diagrams made fro® by the
addition of a single unmarked \red excitation" arrow, whose endpois are on the
skeleton ofG and are distinct from each other and from all other endpoints of eaws
in G. Such diagrams are considered combinatorially | so two are equivalén they
di er only by an orientation preserving di eomorphism of the skeletm. Let us count:
if K hasn crossings, thenG hasn arrows and the skeleton ofs get subdivided into
m :=2n+1 arcs. An A sector diagram is speci ed by the choice of an arc fohe tail
of the red arrow and an arc for the headni? choices), except if the head and the tail
fall within the same arc, their relative ordering has to be speci ed asell (m further
choices). So the rank of the A sector ovet is m(m + 1).

(2) The \Y sector" is the free R;-module generated by all diagrams made frorG by
the addition of a single \red excitation" Y -shape single-vertex graph, with two in-
coming edges (\tails") and one outgoing (\nead"), modulo anti-symmetry for the
two incoming edges (again, considered combinatorially). Counting isare elaborate:
when the three edges of th&r end in distinct arcs in the skeleton ofG, we have
%m(m 1)(m 2) possibilities (% for the antisymmetry). When the two tails of the
Y lie on the same arc, we get 0 by anti-symmetry. The remaining possibyliis to
have the head and one tail on one arc (order matters!) and the ahtail on another,
at 2m(m 1) possibilities. So the rank of the Y sector oveR; is m(m 1)(%m +1).

(3) The \W sector" is the rank 1 free R-module with a single generatomw;. It is not
necessary fow; to have a pictorial representation, yet one, involving a single \red"
1-wheel, is shown in Figurels.

De nition 3.32.  The \interpretation map" :IAM Y ! A % is de ned by sending the
arrows (marked + or ) of a diagram inlAM ¢ to e 2-exponential reservoirs of arrows, as in
the de nition of Z (see Remark3.12). In addition, the red excitations of diagrams inlAM 2
are interpreted as follows:

(1) In the A sector, the red arrow is simply mapped to itself, with thecolour red sup-
pressed.

(2) In the Y sector diagrams have red's and coe cients f 2 R;. Substitute X = €&*
in f, expand in powers ok, and interpret xXY as a \hairy Y with k 1 hairs" as in
Exercise3.21 Note that f (1) = 0, so only positive powers ofx occur, so we never
need to worry about \Y's with 1 hairs". This is the only point where the condition

f 2 R, (as opposed td 2 R) is needed.
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Figure 16. The relationsR making IAM g .

(3) In the W sector treat the coe cients as above, but interpretx*w; as a detached
Wi+1 - |.€., as a detached wheel witlk + 1 spokes, as in Exercis&.21

As stated above,|AM  is the quotient of IAM § by some set of relations. The best way
to think of this set of relations is as \everything that's obviously anihilated by ". Here's
the same thing, in a more formal language:

De nition 3.33. Let IAM ¢ := IAM 2 =R, where R is the linear span of the relations
depicted in Figure 16. The top 8 relations are about moving a leg of the red excitation
across an arrow head or an arrow tail ils. Since the red excitation may be either an arrow
(A)oray, its leg in motion may be either a tail or a head, and it may be moving eithgast
a tail or past a head, there are 8 relations of that type. The nextelation corresponds to
D. Dgr = w; =0. The last relation indicates the \price" (always a redw;) of commuting
a red head across a red tail. As per custom, in each case only thergjiag part of the
diagrams involved is shown. Further, the red excitations are marétewith the letter \r" and
the sign of an arrow inG is markeds; so alwayss 2 f 1g. The relations in the left column
may be multiplied by a scalar inZ, while the relations in the right column may be multiplied
by a scalar inR. Hence, for examplex®w; = 0 by A, yet xw; 6 0 for k > 0.

Proposition 3.34. The interpretation map indeed annihilates all the relations irR.

Proof. Ay and Yy follow immediately from \Tails Commute”. The formal identity
eb(a) = ePae P implies e9P(a)e® = €Pa and henceae® ¢€Pa = (1 9P (a)e’. With a
interpreted as \red| head", b as \black head", and adb as \hair" (justi ed by the -meaning
of hair and by the ST U, relation, Figure 11), the last equality becomes a proof ofYy,.
Further pushing that same equality, we getae® €Pa = 1a§a§b [b; d), where 1a§a§b is rst
interpreted as a power serieéy—ey involving only non-negative powers of/, and then the

substitution y = ad bis made. But that's Ay, when one remembers that on the Y sector
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Figure 17. The special elements;, A, and inIAM g, for a sample 3-arrow Gauss diagra&

|
aLIJtomaticaIIy contains a single \->=" factor. Similar arguments, though usingST U, instead

of STU,, prove that ,Yht, Yi, Ant, and Ay, are all in ker . Finally, A,, is Rl, and Y, is a

direct consequence o& T Us.
Finally, we come to the special elements, A, and! ;.

De nition 3.35. Within IAM g, let ! ; be, as before, the generator of the W sector. Let
A be a \short" red arrow, as in the A,, relation (exercise: moduldR, this is independent
of the placement of the short arrows withinG). Finally, let be the signed sum of exciting
each of the (black) arrows inG in turn. The picture says all, and it is Figure 17.

Proposition 3.36. In A3Y("), the special elements of IANy are interpreted as follows:
("1) = Zwy, ( a) = ZDa, and most interesting, ( ) = EZ. Therefore, Equation (25 (if
true) implies Equation (24) and hence it implies our goal, Theoren3.27.

Proof.  For the proof of this proposition, the only thing that isn't done yet aad isn't trivial
is the assertion ( ) = EZ. But this assertion is a consequence &e 2 = ae 2 and of
a Leibniz law for the derivation E, appropriately generalized to a context wher& can be
thought of as a \product" of \arrow reservoirs". The details areleft to the reader.

3.8.3. The Computation of . Naturally, our next task is to prove Equation 25). This is
done entirely algebraically within the nite rank module IAM . To read this section one
need not know aboutAs"¥("), or , or Z, but we do need to lay out some notation. Start by
marking the arrows ofG with a; through a, in some order.
Let stand for the informal yet useful quantity \a little". Let ; denote the di erence
0 2 of red excitations in the A sector oflAM ¢, where { is the diagram with a red
arrow whose tail is to the right of the left end of & and whose head i% away from head of
a in the direction of the tail of a, and where °has a red arrow whose tail is to the left of
the right end of a and whose head is as beforg, away from head ofg; in the direction of
the tail of & . Let =( ;) be the matrix whose entries are the; 's, as shown in Figurel8.
Similarly, let y; denote the element in the Y sector ofAM ¢ whose red Y has its hea(%
away from head ofg; in the direction of the tail of &, its right tail (as seen from the head)
to the left of the right end of g and its left tail to the right of the left end of . Let

Y =(y; ) be the matrix whose entries are theg; 's, as shown in Figurel8.

Proposition 3.37. With S and T as in De nition 3.24, and withB = T(X S 1) and

as above, the following identities between elements of IgAMind matrices with entries in
44



[N

| Y 1 2
A L7HC N N s
frza e W s -

Figure 18. The matrices andY for a sample 2-arrow Gauss diagram (the signsaarand
a, are suppressed, and so are thanarks). The twists iny1; and y»,» may be replaced by
minus signs.

N

IAM ¢ hold true:

sl Do = tr S (26)
= BY TX Sw; (27)
Y = BY +TX w (28)

Proof of Equation (25) given Proposition3.37. The last of the equalities above implies that
Y=(1 B) TX Swy. Thus

sl Da=trS = trS(BY + TX Sw,)

trS(B(I B) TX S+ TX S)w,
tr (I B) TSX S wy;

and this is exactly Equation @5).

Proof of Proposition 3.37. Equation (26) is trivial. The proofs of Equations 7) and (29
both have the same simple cores, that have to be supplemented bghly unpleasant tracking
of signs and conventions and powers &f. Let us start from the cores.

To prove Equation (27) we wish to \compute” = % 2 As ¢ and % have their
heads in the same place, we can compute their di erence by graduadljding the tail of
from its original position near the left end ofa; towards the right end ofa;, where it would
be cancelled by . As the tail slides we pick up ayx term each time it crosses a head of an
g (relation Ay, ), we pick up a vanishing term each time it crosses a tail (relatioAy), and
we pick up aw; term if the tail needs to cross over its own head (relatioA,,). Ignoring signs
and (X ' 1) factors, the sum of theyj -terms should be proportional toTY, for indeed,
the matrix T has non-zero entries precisely when the head of anfalls within the span of
an a,. Unignoring these signs and factors, we getBY (recall that B = T(X S 1)is just
T with added (X ! 1) factors). Similarly, aw; term arises in this process when a tail has
to cross over its own head, that is, when the head af is within the span ofa;. Thus the
w; term should be proportional toTw;, and we claim itis TX Sw;.

The core of the proof of Equation 28) is more or less the same. We wish to \compute"
yik by sliding its left leg, starting near the left end ofa;, towards its right leg, which is
stationary near the right end ofa;. When the two legs come together, we get 0 because of

the anti-symmetry of Y excitations. Along the way we pick up furthe Y terms from the
45



Yin relations, and sometimes av; term from the Y,, relation. When all signsand X * 1)
factors are accounted for, we get Equation2g).

We leave it to the reader to complete the details in the above proofslt is a major
headache, and we would not have trusted ourselves had we not w&it a computer program to

wClip manipulate quantities inlAM ¢ by a brute force application of the relations irR. Everything
120425 checks; seeW}KOO, \The In nitesimal Alexander Module"].
ends This concludes the proof of Theoren3.27.

Remark 3.38 We chose the name \In nitesimal Alexander Module" as in our mind thee is
some similarity betweenlAM ¢ and the \Alexander Module" of K. Yet beyond the above,
we did not embark on any serious study dfAM g . In particular, we do not know if IAM g
in itself is an invariant of K (though we suspect it wouldn't be hard to show that it is),
we do not know if IAM ¢ contains any further information beyondsl and the Alexander
polynomial, and we do not know if there is any formal relationship be®enIAM ¢ and the
Alexander module ofK .

Remark 3.39 The logarithmic derivative of the Alexander polynomial also appears ihe-
scop's [es], Les]. We don't know if its appearances there are related to its appeares
here.

3.9. The Relationship with u-Knots. Unlike in the case of braids, there is a canonical
universal nite type invariant of u-knots: the Kontsevich integralZ". So it makes sense to
ask how it is related to the expansiorz".

Ku(") zu N0 We claim that the square on the left commutes, wherKY(") stands
for long u-knots (knottings of an oriented line), and similarlyK" (")

a ‘ denotes longw-knots. As before,a is the composition of the maps

KW (") L/AW(--) _u-kr_uo_ts ! v-knots 3 w-knots, and is the induced map on the pro-
jectivizations, mapping each chord to the sum of the two ways to dict

it.

Recall that kills everything but wheels and arrows. We are going to use the foriau
for the \wheel part" of the Kontsevich integral as stated in Kr]. Let K be a O-framed long
knot, and let A(K) denote the Alexander polynomial. Then byKr],

ZY(K) =expau %IogA(K)(eh)thn, wy ~+ \loopy terms" ;

wherews,, stands for the unoriented wheel with 8 spokes; and \loopy terms" means terms
that contain diagrams with more than one loop, which are killed by . Note that by the
symmetry A(z) = A(z 1) of the Alexander polynomial,A(K )(€") contains only even powers
of h, as suggested by the formula.

We need to understand how acts on wheels. Due to the two-in-one-out rule, a wheel is
zero unless all the \spokes" are oriented inward, and the cycle anted in one direction. In
other words, there are two ways to orient an unoriented wheel: dkwise or counterclockwise.
Due to the anti-symmetry of chord vertices, we get that for odd teels (w3, ,,) = 0 and
for even wheels (wj,) = 2wy,. As a result,

1 . .
Z "(K) = expaw élogA(K)(e“)thn! owon = €XPaw  1OGA(K)(Ejhznt wyy
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which agrees with the formula 22) of Theorem3.27. Note that sinceK is O-framed, the rst
part (\ sl coded in arrows") of €2) is trivial.
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4. Algebraic Structures, Projectivizations, Expansions, Cir cuit Algebras

Section Summary. In this section we de ne the \projectivization" (Sec. 4.2)
of an arbitrary algebraic structure (4.1) and introduce the notions of \expansions"
and \homomorphic expansions” (4.3) for such projectivizations. Everything is so
general that practically anything is an example. The baby-example of quandles is
built in into the section; the braid groups and w-braid groups appeared already in
Section 2, yet our main goal is to set the language for the examples of wangles
and w-tangled foams, which appear later in this paper. Both ¢ these examples are
types of \circuit algebras”, and hence we end this section with a general discussion
of circuit algebras (Sec.4.4).

4.1. Algebraic Structures.  An \algebraic structure” O is some collection © ) of sets of

wClip objects of di erent kinds, where the subscript denotes the \kind" of the objects inO ,

120321 along with some collection of \operations” , where each is an arbitrary map with
domain some productO , O , of sets of objects, and range a single sé , (so
operations may be unary or binary or multinary, but they always rairn a value of some
xed kind). We also allow some named \constants" within somé® 's (or equivalently, allow

starts some 0-nary operationsj® The operations may or may not be subject to axioms | an
\axiom" is an identity asserting that some composition of operationss equal to some other
composition of operations.

Figure 19. An algebraic struc-
ture O with 4 kinds of objects \(

and one binary, 3 unary and two

O-nary operations (the constants ObJeCtS
1and ). of kmd -

Figure 19 illustrates the general notion of an algebraic structure. Here ame few specic
examples:

Groups: one kind of objects, one binary \multiplication”, one unaryinverse”, one
constant \the identity”, and some axioms.
Group homomorphisms: Two kinds of objects, one for each group.operations |
3 for each of the two groups and the homomorphism itself, going be&ten the two
groups. Many axioms.
A group acting on a set, a group extension, a split group extensiomé many other
examples from group theory.
A quandle. It is worthwhile to quote the abstract of the paper thatintroduced the
de nition (Joyce, [Joy]):

The two operations of conjugation in a groupxBy =y xy andxB ly=

yxy ! satisfy certain identities. A set with two operations satfying these

28alternatively de ne \algebraic structures” using the theory of \m ulticategories” [Lei]. Using this lan-
guage, an algebraic structure is simply a functor from some \struture" multicategory C into the multi-
category Set (or into Vect , if all O; are vector spaces and all operations are multilinear). A \morphism"
between two algebraic structures over the same multicategor is a natural transformation between the two
functors representing those structures.
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identities is called a quandle. The Wirtinger presentationf the knot group
involves only relations of the formy xy = z and so may be construed as
presenting a quandle rather than a group. This quandle, @llthe knot
quandle, is not only an invariant of the knot, but in fact a cksifying in-
variant of the knot.

Also see De nition 4.2,

Planar algebras as inJon] and circuit algebras as in Sectiod .4.

The algebra of knotted trivalent graphs as inBN8, Dal.

Let& B! Sbe an arbitrary homomorphism of groups (though our notation sugests

what we have in mind | B may well be braids, andS may well be permutations). We

can consider an algebraic structur® whose kinds are the elements @&, for which

the objects of kinds 2 S are the elements ofDs := & 1(s), and with the product in

B de ning operationsOg, O ¢, 'O ,-

Clearly, many more examples appear throughout mathematics.

4.2. Projectivization.  Any algebraic structure O has a projectivization. First extendO

to allow formal linear combinations of objects of the same kind (exteling the operations in
a linear or multi-linear manner), then letl , the \augmentation ideal", be the sub-structure
made out of all such combinations in which the sum of coe cients is Ohen let1 ™ be the
set of all outputs of algebraic expressions (that is, arbitrary copwositions of the operations
in O) that have at leastm inputs in | (andeossiny, further inputs in O), and nally, set

proj O := | M= m*L (29)
m 0
Clearly, with the operations inherited fromQO, the projectivization proj O is again algebraic
structure with the same multi-graph of spaces and operations, bwith new objects and
with new operations that may or may not satisfy the axioms satis ety the operations of
O. The main new feature in projO is that it is a \graded" structure; we denote the degree
m piecel ™=l ™*1 of projO by proj,,O.

We believe that many of the most interesting graded structures #t appear in mathematics
are the result of this construction, and that many of the intereshg graded equations that
appear in mathematics arise when one tries to nd \expansions"”, duniversal nite type
invariants”, which are also morphism& Z: O ! proj O (see Sectiont.3) or when one studies
\automorphisms" of such expansion$. Indeed, the paper you are reading now is really
the study of the projectivizations of various algebraic structure associated with w-knotted
objects. We would like to believe that much of the theory of quanturgroups (at \generic" ~)
will eventually be shown to be a study of the projectivizations of vawus algebraic structures
associated with v-knotted objects.

Thus we believe that the operation described in Equation2@) is truly fundamental and
therefore worthy of a catchy name. So why \projectivization"? VEIl, it reminds us of graded
spaces, but really, that's all. We simply found no better name. We'repen to suggestions.

2Indeed, if O is nitely presented then nding such a morphism Z: O ! projO amounts to nding its
values on the generators ofO, subject to the relations of O. Thus it is equivalent to solving a system of
equations written in some graded spaces.
30The Drinfel'd graded Grothendieck-Teichmuller group GRT is an example of such an automorphism
group. See Dr3, BN6].
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Let us end this section with two examples.
Proposition 4.1. If G is a group,projG is a graded associative algebra with unit.

De nition 4.2. A quandle is a setQ with a binary operation™: Q Q! Q satisfying the
following axioms:

(1) 8x 2 Q; x"x = X.

(2) For any xed y 2 Q, the mapx 7! x"y is invertible®.,

(3) Self-distributivity: 8x;y;x 2 Q; (X"y)"z =(x"2)"(y"2).
We say that a quandleQ has a unit, or is unital, if there is a distinguished element 2 Q
satisfying the further axiom:

(4) 8x2 Q; x"1=xand 1'x = 1.

If G is a group, it is also a (unital) quandle by settingx"y := y xy, yet there are many
guandles that do not arise from groups in this way.

Proposition 4.3. If Q is a unital quandle, proj,Q is one-dimensional andproj.,Q is a
graded right Leibniz algebr& generated byproj, Q.

Proof. For any algebraic structure A with just one kind of objects, propA is one-
dimensional, generated by the equivalence clasq pf any single objectx. In particular,
proj,Q is one-dimensional and generated by [1]. Lét QQ be the augmentation ideal
of Q. Foranyx 2 Qsetx := x 121 . Thenl is generated by thex's, and therefore
| ™ is generated by expressions involving the operatich applied to somem elements of
Q = fx: x 2 Qg and possibly some further elementg; 2 Q. When regarded inl ™= m*1
any y; in such a generating expression can be replaced by 1, for the di ree would be the
same expression withy; replaced byy;, and this is now a member ol ™. But for any
elementz 2 1 we havez"l = z and 1'z = 0, so all the 1's can be eliminated from the
expressions generating™. Thus proj, ,Q is generated byQ and hence by projQ.

Let : QQ! QQ QQ be the linear extension of the operatioxx 7! x x de ned on
X 2 Q, and extend" to a binary operator”,: (QQ QQ) (QQ QQ)! QQ QQ by
using" twice, to pair the rst and third tensor factors and then to pair the second and the
fourth tensor factors. With this language in place, the self-distriltivity axiom becomes the
following linear statement, which holds for everyk;y;z 2 QQ:

(x"y)'z= o0X Yy 2): (30)

Clearly, we need to understand better. By direct computation, if x 2 Q then x =
x 1+1 x+x x.We claim thatin general, ifz is a generating expression df™ (that
is, a formula made ofm elements ofQ and m 1 applications of"), then
X X X .

z=z 1+1 z+ 2z 2z  with zZ’ z0%2 1™ ™ (31)

mO+ mO& m+1;
mOm 06 o

31This can alternatively be stated as \there exists a second binary opration " ! so that 8x; x =

(x"y)" ty = (x" y)"y", so this axiom can still be phrased within the language of \algebraic $ructures"”.
Yet note that below we do not use this axiom at all.
32A Leibniz algebra is a Lie algebra without anticommutativity, as de ned by Loday in [Lod].
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Indeed, for the generators of ! this had just been shown, and iz = z,"z, is a generator
of | ™, with z; and z, generators ofl ™ and | ™2 with 1 mj;m, <m andm;+ my; = m,
then (usingw"1l=wand I'w=0forw2l),
( z1"z) =( 21)"%( )
(zx 1+1 zy+ z)
(z21"22) 1+1 (z"2p)

z
0 X 0 00
2)" (22 1+1 2+ Zy  Zx)

O n OOII O) .
’

X
+ (z3;"22) Zgjo"' Z:?j (200"22)"‘ (z3 Z3) (Z45" 2

j k
and it is easy to see that the last line agrees with3().
We can now combine Equations30) and (31) to gs(t that for any x;y;z 2 QQ,

(V)2 (D Y+ XD K2 (2

If x 21 ™M,y 21M andz 2| M, then by (31) the last term above is in| M+ ma*ma*l
and so the above identity becomes the Jacobi identityx(y)"z = (x"z)"y + x"(y"z) in
projm1+m2+m3Q-

Note that in the above proof neither axiom (1) nor axiom (2) of De iition 4.2 was used.

Exercise 4.4. Show that axiom (1) implies the antisymmetry of' on| 1.

4.3. Expansions and Homomorphic Expansions. We start with the de nition. Given

an algebraic structureO let | O denote the Itered structure of linear combinations of wClip
objects in O (respecting kinds), Iterqgl by the powers [ ™) of the augmentatlon |deall 120502
Recall also that any graded spac& = | G, is automatically ltered, by nm Gn =0

De nition 4.5.  An \expansion" Z for O isamapZ: O! projO that preserves the kinds
of objects and whose linear extension (also call@d to | O respects the lItration of both
sides, and for which (grZz) : (gr | O =proj O) ! (gr proj O = proj O) is the identity map starts
of projO.

In practical terms, this is equivalent to saying thatZ is a mapO ! projO whose re-
striction to 1 ™ vanishes in degrees less than (in proj O) and whose degreen piece is the
projection | ™ 1| M= m*l

We come now to what is perhaps the most crucial de nition in this pape

wClip
De nition 4.6. A \homomorphic expansion” is an expansion which also commutes witlila 120321
the algebraic operations de ned on the algebraic structur®. ends

Why Bother with Homomorphic Expansions? Primarily, for two reasons:

Often times projO is simpler to work with than O; for one, it is graded and so it allows
for nite \degree by degree" computations, whereas often timessuch as in many
topological examples, anything inO is inherently in nite. Thus it can be bene cial
to translate questions aboutO to questions about projfO. A simplistic example
would be, \is some elementa 2 O the square (relative to some xed operation) of an
elementb2 O ?". Well, if Z is a homomorphic expansion and by a nite computation
it can be shown thatZ(a) is not a square already in degree 7 in pr@), then we've
given a conclusive negative answer to the example question. Soms Bmplistic and

more relevant examples appear irBN8].
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Often times projO is \ nitely presented”, meaning that it is generated by some

proj O versions of the relationR; :::R,. So nding Z amounts to solving equations

in graded spaces. It is often the case (as will be demonstrated inidlpaper; see

also BN3, BN6]) that these equations are very interesting for their own algebraic
sake, and that viewing such equations as arising from an attempt smlve a problem

about O sheds further light on their meaning.

In practise, often times the rst di culty in searching for an expansion (or a homomorphic
expansion)Z: O ! projO is that its would-be target space prop is hard to identify. It
is typically easy to make a suggestioA for what proj O could be. It is typically easy to
come up with a reasonable generating sét, for | ™ (keep some knot theoretic examples in
mind, or the case of quandles as in Propositiof.3). It is a bit harder but not exceedingly
di cu|lt to discover some relations R satis ed by the elements of the image db in | M= M*!

(4T, 4T, and more in knot theory, the Jacobi relation in Proposition4.3). Thus we set
A = D=R; but it is often very hard to be sure that we found everything thatought to go in
R; so perhaps our suggestioA is still too big? Finding 4T, or Jacobi in Proposition4.3was
actually not that easy. Perhaps we missed some further relations that are hiding inopQ,
for example?

The notion of anA-expansion, de ned below, solves two problems are once. Once we
an A-expansion we know that we've identi ed profO correctly, and we automatically get
what we really wanted, a (projO)-valued expansion.

De nition 4.7. A \candidate projectivization" for an algebraic struc-

ture O is a graded structureA with the same operations a€O along XX;,AOO
with a homomaorphic surjective graded map : A! projO. An \A- Z/;(Xxxx or Za
expansion” is a kind and ltration respecting mapZ,: O ! A for & .
which (gr Za) Al A s the identity. There's no need to de ne 0 proj o

\homomorphic A-expansions".

Proposition 4.8. If A is a candidate projectivization ofO andZ,: O ! A is a homomor-
phic A-expansion, then :A! projO is anisomorphismandZ :=  Z, is a homomorphic
expansion. (Often in this caseA is identi ed with projO and Z, is identi ed with Z).

Proof. is surjective by birth. Since (grZa) is the identity, it is also injective and
hence it is an isomorphism. The rest is immediate.

4.4. Circuit Algebras. \Circuit algebras" are so common and everyday, and they make
such a useful language (de nitely for the purposes of this papebut also elsewhere), we
nd it hard to believe they haven't made it into the standard mathemdical vocabulary®?.
People familiar with planar algebras Jon] may note that circuit algebras are just the same
as planar algebras, except with the planarity requirement droppetiom the \connection
diagrams" (and all colourings are dropped as well). For the rest, Westart with an image
and then move on to the dry de nition.

330r have they, and we've been looking the wrong way?
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Figure 20. The J-K ip op, a very basic memaory cell, is an electronic
circuit that can be realized using 9 components | two triple-ing \and"  J
gates, two standard \nor" gates, and 5 \junctions" in which 3 vés CP .
connect (many engineers would not consider the junctions ®real K Q
components, but we do). Note that the \crossing" in the middt the
gure is merely a projection artifact and does not indicate anateal
connection, and that electronically speaking, we need notafy how this crossing may be
implemented inR3. The J-K ip op has 5 external connections (labelled J, K, CB), and
Q') and hence in the circuit algebra of computer parts, it livesCs. In the directed circuit
algebra of computer parts it would be i83.» as it has 3 incoming wires (J, CP, and K) and
two outgoing wires (Q and Q).

o)

Figure 21. The circuit algebra product of 4 big black
components and 1 small black component carried out using
a green wiring diagram, is an even bigger component that
has many golden connections (at bottom). When plugged
into a yet bigger circuit, the CPU board of a laptop, our
circuit functions as 4,294,967,296 binary memory cells.

Image 4.9. Electronic circuits are made of \components" that can be wired tagher in many
ways. On a logical level, we only care to know which pin of which compamnes connected
with which other pin of the same or other component. On a logical lelveve don't really need
to know how the wires between those pins are embedded in spaces (Bgures20 and 21).
\Printed Circuit Boards" (PCBs) are operators that make smaller omponents (\chips") into
bigger ones (\circuits") | logically speaking, a PCB is simply a set of \wiring instructions”,
telling us which pins on which components are made to connect (andaag, we never care
precisely how the wires are routed provided they reach their inteed destinations, and ever
since the invention of multi-layered PCBs, all conceivable topologiesrfwiring are actually
realizable). PCBs can be composed (think \plugging a graphics cardto a motherboard");
the result of a composition of PCBs, logically speaking, is simply a largeCB which takes
a larger number of components as inputs and outputs a larger ciitu Finally, it doesn't
matter if several PCB are connected together and then the chigse placed on them, or
if the chips are placed rst and the PCBs are connected later; theesulting overall circuit
remains the same.

We start process of drying (formalizing) this image by de ning \wiring diagrams”, the
abstract analogs of printed circuit boards. LeNN denote the set of natural numbers including

De nition 4.10. Let k;n;nq;:::;ng 2 N be natural numbers. A \wiring diagram" D
with inputs ng;:::ne and outputs n is an unoriented compact 1-manifold whose boundary
isngnig g ng, regarded up to homeomorphism. In strictly combinatorial terms,
it is a pairing of the elements of the seh q n; g g ng along with a single further
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by gluing the corresponding 1-manifolds, and also describable in cdetply combinatorial
terms) which is a wiring diagram with inputs ()1 i «;1 j m and outputs n (note that

A circuit algebra is an algebraic structure (in the sense of Sectigh2) whose operations
are parametrized by wiring diagrams. Here's a formal de nition:

De nition 4.11. A circuit algebra consists of the following data:

For every natural numbern 0 a set (or aZ-module) C,, \of circuits with n legs".
For any wiring diagramD with inputs n;:::n, and outputsn, an operation (denoted
by the same letter)D : C,, Cn.! C, (orlinearD: C,, Cn. ! Cyif
we work with Z-modules).

k

We insist that the obvious \identity" wiring diagrams with n inputs and n outputs act as
the identity of C,, and that the actions of wiring diagrams be compatible in the obvious
sense with the composition operation on wiring diagrams.

A silly but useful example of a circuit algebra is the circuit algebriS of empty circuits,
or in our context, of \skeletons". The circuits with n legs forS are wiring diagrams withn
outputs and no inputs; namely, they are 1-manifolds with boundary (son must be even).

More generally one may pick some collection of \basic components“efmaps some logic
gates and junctions for electronic circuits as in Figur@0) and speak of the \free circuit
algebra" generated by these components. Even more generally van speak of circuit
algebras given in terms of \generators and relations"; in the casé electronics, our relations
may include the likes of De Morgan's law (p_ q) =(: p)* (: q) and the laws governing the
placement of resistors in parallel or in series. We feel there is no dde present the details
here, yet many examples of circuit algebras given in terms of genna and relations appear
in this paper, starting with the next section. We will use the notationC = CAhG j Ri to
denote the circuit algebra generated by a collection of elemer@ssubject to some collection
R of relations.

People familiar with electric circuits know very well that connectors ametimes come in
\male" and \female" versions, and that you can't plug a USB cable intoa headphone jack
and expect your system to cooperate. Thus one may de ne \direxd circuit algebras”
in which the wiring diagrams are oriented, the circuit setC, get replaced byC,,,, for
\circuits with n; incoming wires andn, outgoing wires" and only orientation preserving
connections are ever allowed. Likewise there is a \coloured" versioheverything, in which
the wires may be coloured by the elements of some given Xetwhich may include among its
members the elements \USB" and \audio" and in which connections arallowed only if the
colour coding is respected. We will not give formal de nitions of diréed and/or coloured
circuit algebras here, yet we will allow ourselves to freely use thesations. Likewise for the
obvious analogues of the skeletons algeb&and for algebras given in terms of generators
and relations.

Note that there is an obvious notion of \a morphism between two citgt algebras” and
that circuit algebras (directed or not, coloured or not) form a caggory. We feel that a precise
de nition is not needed. Yet a lovely example is the \implementation mgshism" of logic

circuits in the style of Figure 20 into more basic circuits made of transistors and resistors.
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Perhaps the prime mathematical example of a circuit algebra is tensalgebra. If t; is
an element (a \circuit") in some tensor product of vector spacesnd their duals, andt; is
the same except in a possibly di erent tensor product of vector sges and their duals, then
once an appropriate pairingD (a \wiring diagram") of the relevant vector spaces is chosen,
t; and t, can be contracted (\wired together") to make a new tensob (t;;t,). The pairing
D must pair a vector space with its own dual, and so this circuit algebra i©loured by the
set of vector spaces involved, and directed, by declaring (say)athsome vector spaces are of
one gender and their duals are of the other. We have in fact encoered this circuit algebra
already, in Section3.6.

Let G be a group. AG-graded algebraA is a collectionfAg: g 2 Gg of vector spaces,
along with products Ag  An ! Agn that induce an overall structure of an algebra on
A= ;g Ag Inasimilar vein, we de ne the notion of anS-graded circuit algebra:

De nition 4.12. An S-graded circuit algebra, or a \circuit algebra with skeletons”, is an
algebraic structureC with spacesC , one for each element of the circuit algebra of skeletons
S, along with composition operation®d ..., : C, C,! C, denedwheneverD is
a wiring diagram and = D( 1;:::; k), So that with the obvious induced structure, C

is a circuit algebra. A similar de nition can be made if/when the skeletos are taken to be

directed or coloured.

Loosely speaking, a circuit algebra with skeletons is a circuit algebrawhich every element
T has a well-de ned skeleton&T) 2 S. Yet note that as an algebraic structure a circuit
algebra with skeletons has more \spaces" than an ordinary circuilgebra, for its spaces are
enumerated by skeleta and not merely by integers. The prime exatap for circuit algebras
with skeletons appear in the next section.
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5. w-Tangles

Section Summary. In Sec.5.1we introduce v-tangles and w-tangles, the obvious
v- and w- counterparts of the standard knot-theoretic notion of \tangles", and
brie y discuss their nite type invariants and their associ ated spaces of \arrow
diagrams", AV("n) and AY(",). We then construct a homomorphic expansionZ,
or a \well-behaved" universal nite type invari¢nt for w-ta ngles. Once again, the
only algebraic tool we need to use is ex@) :=  a"=n!, and indeed, Sec5.1is but
a routine extension of parts of Section3. We break away in Sec5.2 and show that
AY(",) = U(ay, tder,n tr,), where a, is an Abelian algebra of rankn and where
tder, and tr,, two of the primary spaces used by Alekseev and TorossiamA ],
have simple descriptions in terms of words and free Lie algehs. We also show
that some functionals studied in JAT ], div and j, have a natural interpretation in
our language. In5.3 we discuss a subclass of w-tangles called \special" w-tareg,
and relate them by similar means to Alekseev and Torossian'sder, and to \tree
level" ordinary Vassiliev theory. Some conventions are degibed in Sec.5.4 and
the uniqueness ofZ is studied in Sech.5.

5.1. v-Tangles and w-Tangles.  With The (surprisingly pleasant) task of de ning circuit

wClip algebras completed in Sectiod.4, the de nition of v-tangles and w-tangles is simple.

120510 penition 5.1. The (S-graded) circuit algebravT of v-tangles is theS-graded directed
circuit algebra generated by two generators iC,., called the \positive crossing” and the
\negative crossing”, modulo the usual Rl R2 and R3 moves as depicted in Figuré (these
relations clearly make sense as circuit algebra relations between tww generators), with the
obvious meaning for their skeleta. The circuit algebraT of w-tangles is the same, except
we also mod out by the OC relation of Figuré (note that each side in that relation involves
wClip only two generators, with the apparent third crossing being merelg projection artifact). In

1205(?2 fewer words VT := CA(3Z, X | [0= O, I=] |, )%= X)), and WT =T / >xé= ).
enas

starts

planar algebras, except then another generator is required (th@rtual crossing”)
and also a few further relations (VR1{VR3, M), and some of the opations (non-
planar wirings) become less elegant to de ne.

Remark 5.2 One may also de ne v-tangles and w-tangles using the language of |
5

Our next task is to study the projectivizations projvT and projwT of v and wT. Again,
the language of circuit algebras makes it exceedingly simple.

De nition 5.3.  The (S-graded) circuit algebraD" = DY of
arrow diagrams is the graded and-graded directed circuit H —
algebra generated by a single degree 1 generatoin C,., AN
called \the arrow" as shown on the right, with the obvious
meaning for its skeleton. There are morphisms: DY ! VI and :DWY ! wrl dened
by mapping the arrow to an overcrossing minus a no-crossing. (Ohet right some virtual
crosFings were added to make the skeleta match). LAY be DV=6T, let AW = AY=TC =

W=4T;TC), and let A% := AV=RI and As" := A¥=RI as usual, with RI, 6T, /4T, and TC
being the same relations as in Figuredand 9 (allowing skeleta parts that are not explicitly
connected to really lie on separate skeleton components).
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Proposition 5.4. The maps above induce surjections : AV ! projvl and : AV
projwT. Hence in the language of De nition4.7, A and A" are candidate projectivizations
of V[ and wrI .

Proof.I Proving that is well-de ned amounts to checking directly that the Rl and 6T
or RI, 4T and TC relations are in the kernel of . (Just like in the nite type theory of
virtual knots and braids.) Thanks to the circuit algebra structure it is enough to verify the
surjectivity of  in degree 1. We leave this as an exercise for the reader.

We do not know if A%V is indeed the projectivizations oWT (also seeBBHLR]). Yet in the
w case, the picture is simple:

Theorem 5.5. The assignment 7! € (with € denoting the exponential of a single arrow
from the over strand to the under strand) extends to a well deed Z: wl' ! A V. The
resulting mapZ is a homomorphicAs"-expansion, and in particular,As" = projwTl and Z
is @ homomorphic expansion.

Proof. There is nothing new here.Z is satis es the Reidemeister moves for the same
reasons as in Theoren2.15and Theorem3.11and as there it also satis es the universality
property. The rest follows from Proposition4.8.

In a similar spirit to De nition 3.13 one may de ne a \w-Jacobi diagram" (often shorts
to \arrow diagram") on an arbitrary skffleton. |Denote the circuit dgebra of formal linear

combinations of arrow diagrams modul&TU;, STU,, and TC relations by A", We have
the following bracket-rise theorem:

Theorem 5.6. The obviouslinclusiop of diagrams induces a circuit algebraomorphism

AV = AW, Furthermore, the AS and'IHX relations of Figure 12 hold in A", Similarly,
ASY = AWt with the expected de nition for As"t,

Proof.  The proof of Theorem3.15can be repeated verbatim. Note that that proof does
not make use of the connectivity of the skeleton.

Given the above theorem, we no longer keep the distinction betwe&t' and A" and
betweenAs" and A",

Remark 5.7. Note that if T is an arbitrary w tangle, then the equality on the left side of the
gure below always holds, while the one on the right generally doesn't:

The arrow diagram version of this statement is that iD is an arbitrary arrow diagram inA"Y,  wClip
then the left side equality in the gure below always holds (we will somahes refer to this 120510
as the \head-invariance" of arrow diagrams), while the right side emlity (\tail-invariance")

generally fails.

shows a
60: (33)  direct proof
of (33

=0; yet
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X1
X1

X1> = A << X3
“: X1

N
sz apply IHX here rst

Figure 22. A wheel of trees can be reduced to a combination of wheels, anteehof trees
with a Little Prince.

We leave it to the reader to ascertain that Equation 82) implies Equation (33). There

is also a direct proof of Equation 83) which we also leave to the reader, though see an
analogous statement and proof inN3, Lemma 3.4]. Finally note that a restricted version
of tail-invariance does hold | see Section5.3.

5.2. A¥(",) and the Alekseev-Torossian Spaces.

De nition 5.8. Let vI(",) (likewise wT (")) be the set of v-tangles (w-tangles) whose
skeleton is the disjoint union ofn directed lines. Likewise letAY(",) be the part of AY
in which the skeleton is the disjoint union ofn directed lines, with similar de nitions for
AY("n), A%("n), and AS("y).

In the same manner as in the case of knots (Theoretlg, AY(",) is a bi-algebra iso-
morphic (via a diagrammatic PBW theorem, applied independently on €a component of
the skeleton) to a spaceB} of unitrivalent diagrams Withlsymme}rized ends coloured with

relation becomesw; = 0, where w; denotes the 1-wheel of any colour.

The primitives P} of B! are the connected diagrams (and hence the primitives A (")
are the diagrams that remain connected even when the skeleton ésnoved). Given the \two
in one out" rule for internal vertices, the diagrams irP?’ can oply be trees or wheels (\wheels
of trees" can be reduced to simple wheels by repeatedly usiigX , as in Figure22).

Thus as a vector spac®)’ is easy to identify. It is a direct sumPY = hreed h wheels.
The wheels part is simply the graded vector space generated by altlic words in the letters

to elements of the free Lie algebrlie, on the generatorsy;:::;x,. But the root of each such
tree also carries a label ifixy;:::;Xng, hence there aren typeg of such trees as separated by
their roots, and soP} is isomorphic to the direct sumtr, ", liep. With By" and P3"

de ned in the analogous manner, we can also conclude thBf" = tr, =(deg 1) ", lien.
By the Milnor-Moore theorem MM], AY(",) is isomorphic to the universal enveloping
algebraU(PY), with P identi ed as the subspaceP" (") of primitives of A" (") using the
PBW symmetrization map : B} ! A “(",). Thus in order to understand A"(",) as an
associative algebra, it is enough to understand the Lie algebra stture induced onP}’ via

the commutator bracket of A% (",).
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We now wish to identify PV (") as the Lie algebratr, o (a, tder,), which in itself is a
combination of the Lie algebrasa,, tder, and tr, studied by Alekseev and TorossiarA[T ].
Here are the relevant de nitions:

De nition 5.9. Let a, denote the vector space with basig;:::;X,, also regarded as an
Abelian Lie algebra of dimensiom. As before, letlie, = lie(a,) denote the free Lie algebra
on n generators, now identi ed as the basis elements af,. Let der, = der(lie,) be the
(graded) Lie algebra of derivations acting otie,, and let

tder, = fD 2 der,: 8i 9a; s.t. D(X;) =[X; &g
denote the subalgebra of \tangential derivations". A tangentiaderivation D is determined

by the a's for which D (x;) = [ xi; &], and determines them up tq the ambiguitys; 7! aj+ iXx;,
where the ;'s are scalars. Thus as vector spaces, tder, = in:1 lie,.

De nition 5.10.  Let Ass, = U(lie,) be the free associative algebra \of words", and leAss,
be the degree> 0 part of Ass,. As before, we letr, = Ass;, =(Xi,Xi,  Xin, = Xi,  Xin Xi,)
denote \cyclic words" or \(coloured) wheels". Asg, Ass,, and tr,, are tder,-modules and WClip

there is an obvious equivariant \trace" tr: As§ ! try. 122:?550
Proposition 5.11. There is a split short exact sequence of Lie algebras
o! tr,'P  Y("))! tder, ! O: wClip
" A " 120523

Proof.  The inclusion is de ned the natural way: tr, is spanned by coloured \ oating"

wheels, and such a wheel is mapped int®%“(",) by attaching its ends to their assigned

strands in arbitrary order. Note that this is well-de ned: wheels hae only tails, and tails

commute. starts
As vector spaces, the statement is already prove®:" (") is generated by trees and wheels

(with the all arrow endings xed on n strands). When factoring out by the wheels, only trees

remain. Trees have one head and many tails. All the ta]ils commute witbach other, and

commuting a tail with a head on a strand costs a wheel (b T U), thus in the quotient the
head also commutes with the tails. Therefore,|the quotient is the ape of oating (coloured)
trees, which we have previously identi ed with i”=1 lie, = a, tder,.

It remains to show that the maps and are Lie algebra maps as well. For this is
easy: the Lie algebrar, is commutative, and is mapped to the commutative (due td@ C)
subalgebra ofP" (") generated by wheels.

To show that is a map of Lie algebras we give two proofs, rst a \hands-on" onehén
a \conceptual” one.

Hands-on argument. a, is the image of single arrows on one strand. These commute
with everything in PY ("), and so does, in the direct suma, tder,.

It remains to show that the bracket oftder, works the same way as commuting trees in

commutator of these elements:
[D;DY(x)) =(DD°® DD)(x;)= D[xi;a] DIx;a]=

=[[xi;al;al+[x;Da’ [xi;al;al [x;D%]=[x;;Da} D% +[a;a]l:
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Now let T and T° be two trees inP¥(",)=tr,, their heads on strandsi and j, respec-
tively (i may or may not equalj). Let us denote bya; (resp. a]-o) the element inlie, given
by forming the appropriate commutator of the colours of the tails oT's (resp. T9. In
tder,, let D = (T)and D°= (T9. D and D°are determined by (Q:::;a;:::;0), and
©;:::; a]-o; :::0), respectively. (In each case, theth or the j -th is the only non-zero compo-
nent.) The commutator of these elements is given bpf D 9(x;) =[Dal D% +[a;a%;xi],
and [D;D9(x;) =[Da D% +[a;a]];x;]: Note that unlessi = j, a = a’= 0.

In PV (",)=tr,, all tails commute, as well as a head of a tree with its own tails. Thek,
commuting two trees only incurs a cost when commuting a head of otree over the tails
of the other on the same strand, and the two heads over each ethif they are on the same
strand. |

If i 6 j, then commuting the head ofT over the tails of T° by STU costs a sum of trees
given by Dajo, with heads on strandj , while moving the head ofT ° over the tails of T costs
exactly D%;, with heads on strandi, as needed.

If i = j, then everything happens on strand, and the cost is Da? D% +[a;a?), where
the last term happens when the two heads cross each other.

Conceptual argument.  There is an action ofP¥ (") on lie,, as follows: introduce and
extra strand on the right. An elementL of lie, corresponds to a tree with its head on
the extra strand. Its commutator with an element ofP% (") (considered as an element of
PY("h+1) by the obvious inclusion) is again a tree with head on strandn(+ 1), de ned to
be the result of the action.

SinceL has only tails on the rst n strands, elements ofr,, which also only have tails, act
trivially. So do single (local) arrows on one strandg). It remains to show that trees act as
tder,, and it is enough to check this on the generators &€, (as the Leibniz rule is obviously
satis ed). The generators oflie, are arrows pointing from one of the rstn strands, say

Istrand i, to strand (n +1). A tree with head on strand i acts on this element, according

"STU, by forming the commutator, which is exactly the action otder,.

To identify PY(",) as the semidirect producttr, o (a, tder,), it remains to show that
the short exact sequence of the Proposition splits. This is indeedetttase, although not
canonically. Two |of the many| splitting maps  u;1: tder, a, ! P "(",) are described
as follows: tder, a, is identi ed with in:1 lien, which in turn is identi ed with oating
(coloured) trees. A map toP"(",,) can be given by specifying how to place the legs on their
speci ed strands. A tree may have many tails but has only one headnd due to T C, only
the positioning of the head matters. Letu (for upper be the map placing the head of each
tree above all its tails on the same strand, whilé (for lower) places the head below all the
tails. It is obvious that these are both Lie algebra maps and that u and | are both
the identity of tder, a,. This makesP"Y(",) a semidirect product.

Remark 5.12 Let tr; denotetr,, mod out by its degree one part (one-wheels). Since the RI
relation is in the kernel of , there is a similar split exact sequence

o! tr; P W1 a, tder,:

De nition 5.13. Forany D 2 tder,, (I u)D isin the kernel of , therefore is in the image
of ,so (I u)D makes sense. We call this elemedivD.
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P
De nition 5.14. In [AT] div is de ned as follows: divéy;:::;an) = -, tr(( @a)X),
where @ picks out the words of a sum which end ix, and deletes their last letterxy, and
deletes all other words (the ones which do not end ).

Proposition 5.15. The div of De nition 5.13 and the div of[AT] are the same.

Proof. It is enough to verify the claim for the linear generators otder,,
single (oating, coloured) trees, where the colour of the head is. By the S
Jacobi identity, Ieacha,- can be written in a forma; = [Xi,; [Xi,;[:xi 0] .
Equivalently, by IHX , each tree has a standard \comb" form, as shown on thexi, ——
picture on the right.

For an associative wordY = y;y,:::y; 2 Ass,, we introduce the notation
[Y]:=[yu:[y2 [:::5;w]: ). The div of [AT] picks out the words that end inx;, forgets the
rest, and considers these as cyclic words. Therefore, by integping the Lie brackets as
commutators, one can easily check that ;‘(cm,- written as above,

i —=

Xiy

div((0;:::;q;:::,0)) = Xip 10X o [Xia friXi IX (34)
=X

In De nition 5.13 div of a tree is the di erence be-
tween attaching its head on the appropriate strand
(here, strandj) below all of its tails and above. As = @
shown in the gure on the right, moving |the head —
across each of the tails on strangrequires anST U re- = P = P /%\
lation, which \costs" a wheel (of trees, which is equiv- | j j

alent to a sum of honest wheels). Namely, the head gets connectedhe tail in question.
So div of the tree repreigented by is given by

. =j'connect the head to the leaf". wClip
This in turn gets mapped to the formula above via the correspondee between wheels and 120523

cyclic words. ends
) . wClip
Remark 5.16 There is an action oftder, 120530

on tr, as follows. Represent a cyclic word
w 2 tr, as a wheel inP%(",) via the map
Given an elementD 2 tder,, u(D), as =

de ned above, is a tree inP%¥(",) whose has extra
head is above all of its tails. We de neD material on
w:= Iu(D) (w) (w)u(D)). Note that the

u(D) (w) (w)u(D)isintheimage of , i.e., alinear combination of wheels, for the following rﬂfgmﬁgp

reason. The wheel(w) has only tails. As we commute the treai(D) across the wheel, the with
head of the tree is commuted across tails of the wheel on the sam@sd. Each time this i erential
happens the cost, by th'GSTlU relation, is a wheel with the tree attached to it, as shown on operators

the right, which in turn (by 'THX relations, as Figure22 shows) is a sum of wheels. Once
the head of the tree has been moved to the top, the tails of the gecommute up for free by
TC. Note that the alternative de nition, D w:= (I(D) (w) (w)I(D)) is in fact equal

to the de nition above.
61



De nition 5.17. In [AT], the group TAut, is de ned as expfder,). Note that tder, is
positively graded, hence it integrates to a group. Note also that Tét, is the group of
\basis-conjugating” automorphisms oflie,, i.e., forg 2 TAut,, and any x;, i = 1;:::;n
generator oflie,, there exists an elemeng; 2 exp(lie,) such that g(x;) = g 'Xig.

The action oftder, on try lifts tg-an actlon of TAut,, ontr,, by interpreting exponentials

formally, in other words€P acts as ﬁ —0 n, The lifted action is by conjugation: forw 2 tr,

andeP 2 TAut,, e? w= 1(e'® (w)e 'P).
Recall that in Section 5.1 of AT ] Alekseev and Torossian construct a maj. TAut, ! tr,
which is characterized by two properties: the cocycle property

j(gh)y=j(9)+ g j(h); (35)

where in the second term multiplication byg denotes the action described above; and the
condition

d. : .
45l (exp(sD))js=o = div( D): (36)
Now let us interpretj in our context.

De nition 5.18. The adjoint map : A%(",) ' A Y(",) acts by \ipping over diagrams
and negating arrow heads on the skeleton". In other words, fonarrow diagramD,
= ( 1)# f tails on skeleton gS(D).

where S denotes the map which switches the orientation of the skeleton atrds (i.e. ips
the diagram over), and multiplies by ( 1)#skeleton vertices

Proposition 5.19. For D 2 tder,, dene a map J: TAut, ! exp(r,) by J(e°) =
e'P (") . Then
exp( (€°)) = J(e°):
Proof. Note that (e"°) = e P, due to \Tails Commute" and the fact that a tree has only
one head.
Let us check that log) satis es properties ¢85 and (36). Namely, with g = €P* and
h = €2, and using thattr, is commutative, we need to show that

J(ePreP2) = J(ePr) e'Pr J(€P?) ; (37)
where denotes the action ottder, ontr,,; and that
d . :

d—SJ(eSD)Js:o = div D: (38)

Indeed, with BCH(D1; D>) = log €°:eP2 being the standard Baker{Campbell{Hausdor
formula,

J(eDl 2) — J( BCH(D1; Dz)) — eU(BCH(D]_ Dz)e I(BCH(D1; Dz) — ABCH(uDq; UDz)e BCH(ID 1;ID 2)
- UDleUDze |D2e ID1 - eUDl(euDze |D2)e UDleUDle|D1 = (eUD]_ J(Dz))J(Dl),

as needed.
As for condition (36), a direct computation of the derivative yields

d . .
d—SJ(eSD)Js=o =uD ID =div D;

as desired.
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5.3. The Relationship with u-Tangles. Let uT be the planar algebra of classical, or
\usual" tangles. There is a mam: ul ! WT of u-tangles into w-tangles: algebraically, it is
de ned in the obvious way on the planar algebra generators af . (It can also be interpreted
topologically as Satoh's tubing map, as in SectioB.1.1, where a u-tangle is a tangle drawn
on a sphere. However, it is only conjectured that the circuit algebrpresented here is a
Reidemeister theory for \tangled ribbon tubes inR*".) The map a induces a corresponding
map :AY ! A Y which maps an ordinary Jacobi diagram (i.e., unoriented chords with
internal trivalent vertices modulo the usualAS, IHX and ST U relations) to the sum of all
possible orientations of its chords (many of which are zero &% due to the \two in one
out" rule).

aT 2o It is tempting to ask whether the square on the left commutes. Uof-
tunately, this question hardly makes sense, as there is no canotichoice
a for the dotted line in it. Similarly to the braid case in Section2.5.5 the

wT 2 Jipnsw  de nition of the Kontsevich integral for u-tangles typically depends on vari-
ous choices of \parenthesizations". Choosing parenthesizatioiisis square
becomes commutative up to some xed corrections. The details aire Proposition 6.15
Yet already at this point we can recover something from the existea of the mapa: uT !
wT, namely an interpretation of the Alekseev-TorossianA[l' | space of special derivations,

X
sdep, .= fD 2 tder,: D(  x;)=0g:
i=1
Recall from Remark5.7 that in general it is not possible to slide a strand under an arbitrary
w-tangle. However, it is possible to slide strands freely under tanglesthe image ofa, and
thus by reasoning similar to the reasoning in Remark.7, diagramsD in the image of
respect \tail-invariance™:

W

Let PY(",) denote the primitives ofAY(",,), that is, Jacobi diagrams that remain connected
when the skeleton is removed. Remember th&"(",) stands for the primitives of AV (",,).
Equation (39) readily implies that the image of the compaosition

PU("y) —PV("y) — B, tder,

is contained ina, sder,. Even better is true.

(39)

Theorem 5.20. The image of s preciselya, sde,.

This theorem was rst proven by Drinfel'd (Lemma after Proposition6.1 in [Dr3]), but
the proof we give here is due to Levind_gv].
Proof. Let Iie denote the degreal piece oflie,. Let V, be the vector space with basis
X1, X0, 001, Note that

M
V, lied = lied = (tder, a,)%;
i=1
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wheretder, is graded by the number of tails of a tree, and, is contained in degree 1.
The bracket de nes a map : V, I|e ! I|ed+1 for g 2 I|e wherei = 1;:::;n, the
\tree" D = (as ap:::;a,) 2 (tdern ay)d is mapped to

X
(D)= [x;a&a]l=D Xi
i=1 i=1
where the rst equality is by the de nition of tensor product and the bracket, and the second
is by the de nition of the action of tder, on lie,.

Sincea, is contained in degree 1, by de nitionsdef! = (ker )4 ford 2. In degree 1a,
is obviously in the kernel, hence (ker)! = a, sdef. So overall, ker = a, sdek,.

We want to study the image of the mapP"("") ! a, tder,. Under , all connected
Jacobi diagrams that are not trees or wheels go to zero, and umde so do all wheels.
Furthermore, maps trees that live onn strands to \ oating" trees with univalent vertices
coloured by the strand they used to end on. So for determining thmage, we may replace
PY("™) by the spaceT, of connectedunoriented \ oating trees" (uni-trivalent graphs), the
ends (univalent vertices) of which are coloured by théx;gi-;...,. We denote the degrea
piece ofT,, i.e., the space of trees witli+ 1 ends, by T 9. Abusmg notation, we shall denote
the map induced by onT,by :T,! a, tder,. Since choosing a \head" determines
the entire orientation of a tree by the two-in-one-out rule, maps a tree inT.% to the sum
of d+ 1 ways of choosing one of the ends to be the \head".

We want to show that ker =im . This is equivalent to saying that is injective, where

'V, liep=im ! lie, is map induced by on the quotient by im .

The degreed piece ofV, lie,, in the pictorial description, is (0;::;a;:50) 70 [xi;&]
generated by oating trees withd tails and one head, all coloured
by x;, i =1;:::;n. This is mapped toI|ed+1 which is isomorphic
to the space of oating trees withd + 1 talls and one head, where

only the tails are coloured by thex;. The map acts as shown
on the picture on the right.

We show that is injective by exhibiting a map : Iieﬂ+l !

V, lied=im sothat =1. isdened as follows: given a
tree with one head andd + 1 tails acts by deleting the head é% + M
and the arc connecting it to the rest of the tree and summing ovetlavays of choosing a new
head from one of the tails on the left half of the tree relative to ther@inal placement of
the head (see the picture on the right). As long as we show thatis well-de ned, it follows
from the de nition and the pictorial description of that N P

For well-de nedness we need to check that the images A8 and IHX relations under
are in the image of . This we do in the picture below. In both cases it is enough to check
the case when the \head" of the relation is the head of the tree itfeas otherwise anAS or
‘IHX relation in the domain is mapped to arAS or IHX relation, thus zero, in the image.

g A [
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I B C B B B C B B CB C B
ws LI
A A A A A A A A
B CcB C B
A
| A A A
In the IHX picture, in higher degreesA, B and C may denote an entire tree. In this case,
the arrow at A (for example) means the sum of all head choices from the trée

Comment 5.21 In view of the relation between the right half of Equation 89 and the
special derivationssder, it makes sense to call w-tangles that satisfy the condition in the kef
half of Equation (39 \special". The aimages of u-tangles are thus special. We do not know
if the global version of Theorem5.20 holds true. Namely, we do not know whether every
special w-tangle is thea-image of a u-tangle.

5.4. The local topology of w-tangles.  So far throughout this section we have presented
w-tangles as a Reidemeister theory: a circuit algebra given by geners and relations.
Note that Satoh's tubing map (see Sectiong.2.2 and 3.1.1) does extend to w-tangles in
the obvious way, although it is not known whether it is an isomorphism diween the circuit
algebra described here and tangled tubes iR*. Nonetheless, this intuition explains the
local relations (Reidemeister moves). The purpose of this subgeatis to explain the local
topology of crossings and understand orientations, signs and or&tion reversals.

The tubes we consider are endowed with two orientations, we will cdhese
the 1- and 2-dimensional orientations. The one dimensional orietitan is the
direction of the tube as a \strand" of the tangle. In other wordseach tube has a
\core"**: a distinguished line along the tube, which is oriented as a 1-dimensidna
manifold. Furthermore, the tube as a 2-dimensional surface is anmted as given
by the tubing map. An example is shown on the right.

Note that a tube in R* has a \lling": a solid (3-dimensional) cylinder embedded inR*,
with boundary the tube, and the 2D orientation of the tube inducesan orientation of its lling
as a 3-dimensional manifold. A (non-virtual) crossing is when the @of one tube intersects
the lling of another transversely. Due to the complementary dimesions, the intersection is
a single point, and the 1D orientation of the core along with the 3D ongation of the lling
it passes through determines an orientation of the ambient spacdé/e say that the crossing
is positive if this agrees with the standard orientation oR*, and negative otherwise. Hence,
there are four types of crossings, given by whether the core abe A intersects the lling
of B or vice versa, and two possible signs in each case.

As discussed in Sectior?.2, braided tubes inR* can be thought of as movies of ying
rings in R%, and in particular a crossing represents a ring ying through anotér ring. In
this interpretation, the 1D orientation of the tube is given by time maing forward. The
2D and 1D orientations of the tube together induce an orientationfahe ying ring which
is a cross-section of the tube at each moment. Hence, saying \bv&land \above" the ring
makes sense, and as mentioned in Exercid€ there are four types of crossings: ring A ies
through ring B from below or from above; and ring B ies through ringA from below or from
above. A crossing is positive if the inner ring comes from below, andgagive otherwise.

34The core of Lord Voldemort's wand was made of a phoenix feather.
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In Sections 2.2.2 and 3.1.1 we have z

discussed the tubing map from v- or w-
diagrams of braids or knots to ribbon e
tubes in R*: the under-strand of a cross-

ing is interpreted as a thinner tube (or a
ring ying through another). This gen-
eralizes to tangles easily. We take the R°:2z=0 R
opportunity here to introduce another notation, to be called the band notation”, which is
more suggestive of the 4D topology than the strand notation. Wespresent a tube inR* by a
picture of an oriented band inR3. By \oriented band" we mean that it has two orientations:
a 1D direction (for example an orientation of one of the edges), ar@2D orientation as a
surface. To interpret the 3D picture of a band as an tube iR*, we add an extra coordinate.
Let us refer to the R® coordinates asx;y and t, and to the extra coordinate asz. Think
of R® as being embedded iR* as the hyperplanez = 0, and think of the band as being
made of a thin double membrane. Push the membrane up and down ineth direction at
each point as far as the distance of that point from the boundaryfdhe band, as shown on
the right. Furthermore, keep the 2D orientation of the top membaine (the one being pushed
up), but reverse it on the bottom. This produces an oriented tubembedded inR*.

In band notation, the four possible crossings appear as follows, eve underneath each
crossing we indicate the corresponding strand picture, as mentexhin Exercise2.7:

<N
A= X =

The signs for each type of crossing are shown in the gure above.otd that the sign of
a crossing depends of the 2D orientation of the over-strand, aglwas the 1D direction of
the under-strand. Hence, switching only the direction (1D orientéon) of a strand changes
the sign of the crossing if and only if the strand of changing directiois the under strand.
However, fully changing the orientation (both 1D and 2D) always swihes the sign of the
crossing. Note that switching the strand orientation in the strandnotation corresponds to
the total (both 1D and 2D) orientation switch.

5.5. Good properties and uniqueness of the homomorphic expansio n. In much the
same way as in Sectio2.5.1, Z has a number of good properties with respect to various
tangle operations: it is group-like; it commutes with adding an inert sand (note that this
is a circuit algebra operation, hence it doesn't add anything beyondomomorphicity); and
it commutes with deleting a strand and with strand orientation revesals. All but the last
of these were explained in the context of braids and the explanati®still hold. Orientation
reversalSc: wl' ! wT is the operation which reverses the orientation of thie-th component.
Note that in the world of topology (via Satoh's tubing map) this meangeversing both the
1D and the 2D orientations. The induced diagrammatic operatio8,: AY(T) ' A “(Sk(T)),

where T denotes the skeleton of a given w-tangle, acts by multiplying eachraw diagram
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by ( 1) raised to the power the number of arrow endings (both heads ditails) on the
k-th strand, as well as reversing the strand orientation. Saying &t \ Z commutes with S;"
means that the appropriate square commutes.

The following theorem asserts that a well-behaved homomorphic exgsion ofw-tangles
is unique:

Theorem 5.22. The only homomorphic expansion satisfying the good propest described
above is theZ de ned in Section5.1.

Proof. ~ We rst prove the following claim: Assume, by contradiction,
that Z°is a di erent homomorphic expansion ofv-tangles with the good = 'EO ’* ‘ 051
properties described above. LeéR°= Z{ ) and R = Z( ), and denote

by the lowest degree homogeneous non-vanishing terrR¥ R. (Note that R°determines
Z%s0ifz°8 Z,thenR°6 R.) Suppose is of degreek. Then we claimthat = jwi+ w2

is a linear combination ofw! and wZ, wherew}, denotes a&k-wheel living on strandi, as shown
on the right.

Before proving the claim, note that it leads to a contradiction. Let); denote the operation
\delete strand i". Then up to degreek, we haved;(R% = ,wi and d,(R%) = w2, but Z°
is compatible with strand deletions, so ; = 5, =0. HenceZ is unique, as stated.

On to the proof of the claim, note thatZ° being an expansion determines the degree 1
term of R® (namely, the single arrowa'? from strand 1 to strand 2, with coe cient 1). So
we can assume thak 2. Note also that since bothR%and R are group-like, is primitive.
Hence is a linear combination of connected diagrams, namely trees and wisee

Both R and R satisfy the Reidemeister 3 relation:

R12R13R23 - R23R13R12. RG.ZROJBR(ES - R(ESROJBRQ.Z

where the superscripts denote the strands on whiéhis placed (compare with Remark2.16).
We focus our attention on the degred + 1 part of the equation for R® and use that up to
degreek + 1. We can write R°= R+ + , where denotes the degre& + 1 homogeneous
part of R® R. Thus, up to degreek + 1, we have

(R12+ 12+ 12)(R13+ 13+ 13)(R23+ 23+ 23):(R23+ 23+ 23)(R13+ 13+ 13)(R12+ 12+ 12):

The homogeneous degrde+ 1 part of this equation is a sum of some terms which contain
and some which don't. The diligent reader can check that those whidafon't involve
cancel on both sides, either due to the fact thaR satis es the Reidemeister 3 relation, or
by simple degree counting. Rearranging all the terms which do involveto the left side, we
get the following equation, wherea! denotes an arrow pointing from strand to strand j:

[a12; 13]+[ 12;a13] +[a12; 23]+[ 12;a23] +[a13; 23]+[ 13;a23] =0: (40)

The third and fth terms sum to [ a'?+ a*3; 23], which is zero due to the \head-invariance"
of diagrams, as in Remarls.7.

We treat the tree and wheel components of separately. Let us rst assume that is
a linear combination of trees. Recall that the space of trees on tvgrands is isomorphic
to lie, liey, the rst component given by trees whose head is on the rst strad, and the
second component by trees with their head on the second straricet = ;+ 5, where |

is the projection to thei-th component fori =1;2.
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Note that due to TC, we have §'?; 1% =[ 1%;a%® = [ 1%a*] = 0. So Equation (40)

reduces to
[alZ; 13] +[ 12’ alS] +[ %2' a23] +[ 13’ a23] +[ %3' a23] =0

The left side of this equation lives in~ ., lies. Notice that only the rst term lies in the
second direct sum component, while the second, third and last tesnlive in the third one,
and thelfourth term lives in the rst. This in particular means that the rst term is itself
zero. By STU, this implies

0=[a% Pl= [ x5
where [ 1;x1]3® means the tree de ned by the element [; x;] 2 lie,, with its tails on strands
1 and 3, and head on strand 2. Hence,[ x;] =0, so ; is a multiple of x;. The tree given
by 1= x;is a degree 1 element, a possibility we have eliminated, sp= 0.

Equation (40) is now reduced to
[ e+ e =0:

Both terms are words inlies, but notice that the rst term does not involve the letter xs.
This means that if the second term involvexs; at all, i.e., if , has tails on the second
strand, then both terms have to be zero individually. Assuming thisrad looking at the
rst term, 22 is a Lie word in x; and x,, which does involvex, by assumption. We have
[ $2,a%%] = [x2; 3%] = 0, which implies 12 is a multiple of x», in other words, is a single
arrow on the second strand. This is ruled out by the assumption th& 2.

On the other hand if the second term does not involvg; at all, then , has no tails on
the second strand, hence it is of degree 1, but again 2. We have proven that the \tree
part” of is zero.

So is a linear combination of wheels. Wheels have only tails, so the rst, @d and
fourth terms of (40) are zero due to the tails commute relation. What remains is {; a%%] = 0.
We assert that this is true if and only if each linear component of has all of its tails on one
strand.

To prove this, recall each wheel of!3 represents a cyclic word in letters<; and x3. The
mapr: B 7! [ 13;,a%%is amaptr, ! trz, which sends each cyclic word in letters; and X
to the sum of all ways of substituting k»; x3] for one of thexs's in the word. Note that if
we expand the commutators, then all terms that have, between twoxs's cancel. Hence all
remaining terms will be cyclic words inx; and x3 with a single occurrence ok, in between
an x; and anXs.

We construct an almost-inverse °to r: for a cyclic wordw in trs with one occurrence of
X,, let r®be the map that deletesx, from w and maps it to the resulting word intr, if x,
is followed by xz in w, and maps it to 0 otherwise. On the rest ofr; the map r® may be
de ned to be 0.

The compositionr% takes a cyclic word inx; and x3 to itself multiplied by the number
of times a letter x3 follows a letterx; in it. The kernel of this map can consist only of cyclic
words that do not contain the sub-wordxsx;, namely, these are the words of the form or
xX. Such words are indeed in the kernel of, so these make up exactly the kernel of This
is exactly what needed to be proven: all wheels inhave all their tails on one strand.

This concludes the proof of the claim, and the proof of the theorem
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6. w-Tangled Foams

Section Summary. If you have come this far, you must have noticed the
approximate Bolero spirit of this article. In every chapter a new instrument comes
to play; the overall theme remains the same, but the composibn is more and more
intricate. In this chapter we add \foam vertices" to w-tangl es (and a few lesser
things as well) and ask the same questions we asked before;imarily, \is there a
homomorphic expansion?”. As we shall see, in the current cdaxt this question
is equivalent to the Alekseev-Torossian AT ] version of the Kashiwara-Vergne KV |
problem and explains the relationship between these topicand Drinfel'd's theory
of associators.

6.1. The Circuit Algebra of w-Tangled Foams. For reasons we will reluctantly ac-
knowledge later in this section (see Commert.2), we will present the circuit algebra of
w-tangled foams via its Reidemeister-style diagrammatic descriptidiaccompanied by a lo-
cal topological interpretation) rather than as an entirely topologal construct.

De nition 6.1. Let wWIF° (where o stands for \orientable", to be explained in Sectiort.5)
be the algebraic structure

D , : : E
TE° = CA ~ 7 » w-relations as in w-operations as .
W c K’ X’ T’ j" X Section6.1.2  in Section6.1.3

HencewTF? is the circuit algebra generated by the generators listed above anéscribed
below, modulo the relations described in Sectidghl1.2 and augmented with several \auxiliary
operations"”, which are a part of the algebraic structure oWTF° but are not a part of its
structure as a circuit algebra, as described in Sectighl.3

To be completely precise, we have to admit thawTF° as a circuit algebra ) //v )
has more generators than shown above. The last two generatare \foam NN 4N
vertices", as will be explained shortly, and exist in all possible orienians of the three
strands. Some examples are shown on the right. However, in Sect®1.3we will describe
the operation \orientation switch" which allows switching the orientdion of any given strand.
In the algebraic structure which includes this extra operation in adtion to the circuit algebra
structure, the generators of the de nition above are enough.

6.1.1. The generators of WF°. There is topological meaning to each of the generators of
WTF?: they each stand for a certain local feature of framed knottedlabon tubes inR*. As

in Section5.4, the tubes are oriented as 2-dimensional surfaces, and also hawbstinguished
core with a 1-dimensional orientation (direction).

The crossings are as explained in Secti@n2.2and Section5.4: the under-strand denotes
the ring ying through, or the \thin" tube. Remember that there r eally are four kinds of
crossings, but in the circuit algebra the two not shown are obtainefiom the two that are
shown by adding virtual crossings.

The bulleted end denotes a cap on the tube, or a ying ring that shris to
a point, as in the gure on the right. In terms of Satoh's tubing map,the cap T - ﬂ
means that \the string is attached to the bottom of the thickenedsurface", as
shown in the gure below. Recall from Sectior3.1.1that the tubing map is the composition
st [ ;]! R*%
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Here is a trivalent tangle with \drawn on the virtual surface ", with caps ending on

[ ; ]. The rst embedding above is the product of this \drawing" with an St, while
the second arises from the unit normal bundle of inR*. For each cap ¢; ) the tube
resulting from Satoh's map has a boundary compone@®=(c; ) S!. Follow the tubing
map by gluing a disc to this boundary component to obtain the cappetibe mentioned
above.

S

b :
=== Y glue disc (5
— 7, = GEED, , 2

The last two generators denote singular \foam vertices". As theatation sug-
gests, a vertex can be thought of as \half of a crossing”. To makais precise
using the ying rings interpretation, the rst singular vertex represents the movie
shown on the left: the ring corresponding to the right strand apmaches the ring
represented by the left strand from below, ies inside it, and thenfte two rings
fuse (as opposed to a crossing where the ring coming from the rigituld continue
to y out to above and to the left of the other one). The second wéex is the
movie where a ring splits radially into a smaller and a larger ring, and thersall
one ies out to the right and below the big one.

The vertices can also be interpreted topologically via a nat-
ural extension of Satoh's tubing map. For the rst generating
vertex, imagine the broken right strand approaching the con- .
tinuous left strand directly from below in a thickened surface,
as shown.

The reader might object that there really are four types of verties (as there are four
types of crossings), and each of these can be viewed as a \fuged tsplit" depending on the
strand directions, as shown in Figure3. However, looking at the fuse vertices for example,
observe that the last two of these can be obtained from the rstwo by composing with
virtual crossings, which always exist in a circuit algebra.

The sign of a vertex can be de ned the same way as the sign of a @iag (see Section.4).
We will sometimes refer to the rst generator vertex as \the posite vertex" and to the second
one as \the negative vertex". We use the band notation for vertes the same way we do for
crossings: the fully coloured band stands for the thin (inner) ring.

Asr 2 AN YN A
NN LS YT

Figure 23. Vertex types inwTF°.

6.1.2. The relations of WF°. In addition to the usual RF, R2, R3, and OC moves of Figuré,

we need more relations to describe the behaviour of the addition&lafures.
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Comment6.2. As before, the relations have local topological explanations, an@&wonjecture
that together they provide a Reidemeister theory for \w-tangledfoams”, that is, knotted

ribbon tubes with foam vertices inR*. In this section we list the relations along with
the topological reasoning behind them. However, for any rigoroggirposes belowwTlF° is

studied as a circuit algebra given by the declared generators andateoons, regardless of their
topological meaning.

Recall that topologically, a cap represents a capped tube or equiemtly, ying ring shrink-
ing to a point. Hence, a cap on the thin (or under) strand can be \gled out" from a crossing,
but the same is not true for a cap on the thick (or over) strand, ashown below. This is the
case for any orientation of the strands. We denote this relation kCP, for Cap Pull-out.

'@w’WT*w'

T AR

The Reidemeister 4 relations assert that a strand can be moved werdr over a crossing, as
shown in the picture below. The ambiguously drawn vertices in the pigte denote a vertex
of any kind (as described in Sectiol.1.1), and the strands can be oriented arbitrarily. The
local topological (tube or ying ring) interpretations can be read fom the pictures below.
These relations will be denoteR4.

AT AT A
R e

6.1.3. The auxiliary operations of WF°. The circuit algebrawTF° is equipped with several
extra operations.

The rst of these is the familiar orientation switch. We will, as mentioné in Section5.4,
distinguish between switching both the 2D and 1D orientations, or gt the strand (1D)
direction.

Topologically orientation switch, denoted S, is the switch of both orientations of the
strand e. Diagrammatically (and this is the de nition) S is the operation which reverses
the orientation of a strand in awTF° diagram. The reader can check that when applying
Satoh's tubing map, this amounts to reversing both the direction ahthe 2D orientation of
the tube arising from the strand.

CP:
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2 3
ArA2As = compose w/ The negative
/j ig virtual xing V4 vertex
N )

Figure 24. Switching strand orientations at a vertex. The adjoint operationly switches
the tube direction, hence in théand pictureonly the arrows change. To express this vertex
in terms of the negative generating vertex in strand notation, wee a virtual crossing (see
Figure 23).

The operation which, in topology world, reverses a tube's directionub
not its 2D orientation is called \adjoint" , and denoted byA.. This is /E
slightly more intricate to de ne rigorously in terms of diagrams. In ad =
dition to reversing the direction of the strande of the wTF° diagram, A, W

also locally changes each crossing @bver another strand by adding two

virtual crossings, as shown on the right. We recommend for theager to € €

convince themselves that this indeed represents a direction swittchtopology after reading
Section6.5.

Remark 6.3, As an example, let us observe how the negative generator verteencbe ob-
tained from the positive generator vertex by adjoint operationsrad composition with virtual
crossings, as shown in Figurg4. Note that also all other vertices can be obtained from the
positive vertex via orientation switch and adjoint operations and amposition by virtual
crossings.

As a small exercise, it is worthwhile to convince ourselves of the eteaf orientation switch
operations on theband picture For example, replaceA;A,Az by S;S,S; in gure 24. In
the strand diagram, this will only reverse the direction of the strads. The reader can check
that in the band picture not only the arrows will reverse but also theblue band will switch
to be on top of the red band.

Comment 6.4. Framings were discussed in RemarR.5 but have not played a signi cant
role so far, except to explain the lack of a Reidemeister 1 relation. Wowe will need to
discuss framings in order to provide a topological explanation for ¢hunzip (tube doubling)
operation.

In the local topological interpretation of WIF°, strands represent ribbon-knotted tubes
with foam vertices, which are also equipped with a framing, arising fno the blackboard
framing of the strand diagrams via Satoh's tubing map. Strand douing is the operation
of doubling a tube by \pushing it o itself slightly” in the framing directio n, as shown in
Figure 25.

Recall that ribbon knotted tubes have a \lling", with only \ribbon" s elf-intersections.
When we double a tube, we want this ribbon property to be preserste This is equivalent
to saying that the ring obtained by pushing o any given girth of the ube in the framing
direction is not linked with the original tube, which is indeed the case,samentioned in
Remark 3.5.
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Figure 25. Unzipping a tube, in band notation with orientations and framgi marked.

Satoh's tubing map always match at the vertices, with the normal \&ors
pointing either directly towards or away from the centre of the singjar
ring. Note that the orientations of the three tubes may or may nomatch.
An example of a vertex with the orientations and framings shown is ahe
right. Note that the framings on the two sides of each band are mor
images of each other, as they should be.

Framings arising from the blackboard framing of strand diagrams via g %
)
O

Unzip, or tube doubling is perhaps the most interesting of the auxiligrwTF° operations.
As mentioned above, topologically this means pushing the tube o itHeslightly in the
framing direction. At each of the vertices at the two ends of the ddled tube there are two
tubes to be attached to the doubled tube. At each end, the norrhaectors pointed either
directly towards or away from the centre, so there is an \inside" ah an \outside" ending
ring. The two tubes to be attached also come as an \inside" and an Mside" one, which
de nes which one to attach to which. An example is shown in Figurgs. Unzip can only be
done if the 1D and 2D orientations match at both ends.

To de ne unzip rigorously, we must talk only of strand diagrams. S
The natural de nition is to let ue double the strand e using the
blackboard framing, and then attach the ends of the doubled stna . Ue
AN

to the connecting ones, as shown on the right. We restrict unzip
to strands whose two ending vertices are of di erent signs. This is
a somewhat arti cial condition which we impose to get equations
equivalent to the [AT ] equations.

A related operation, disk unzip is unzip done on a capped strand, pushing the tube o
in the direction of the framing (in diagrammatic world, in the direction d the blackboard
framing), as before. An example in the line and band notations (withhie framing suppressed)

is shown below.
W\

Finally, we allow the deletion of \long linear" strands, meaning strandshat do not end
in a vertex on either side.
The goal, as before, is to construct a homomorphic expansion f@fF°. However, rst we

need to understand its target space, the projectivization prayTF°.
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6.2. The projectivization. Mirroring the previous section, we describe the projectivization
AsY of WTF° and its \full version” A% as circuit algebras on certain generators modulo a
number of relations. From now on we will writeA®" to mean \A" and/or AS"".

D . . . . E
(s)w — x relations as in operations as in—,
Atv=ca 1 (0 Section6.2.1  Section6.2.2
In other words, A®" are the circuit algebras of arrow diagrams on trivalent (or foam)
skeletons with caps. Note that all but the rst of the generatorsare skeleton features (of
degree 0), and that the single arrow is the only generator of degré. As for the generating
vertices, the same remark applies as in De nitior®.1, that is, there are more vertices with
all possible strand orientations needed to generafe®¥ as circuit algebras.

6.2.1. The relations of A®" . In addition to the usual!4T and TC relations (see Sectior2.3),
as well as Rl in the case oASY = AW=RI, diagrams inA(®" satisfy the following additional
relations: |

Vertex invariance, denoted byVI, are relations arising the same way a4T does, but with
the participation of a vertex as opposed to a crossing:

TR = A A

The other end of the arrow is in the same place throughout the relan, somewhere outside
the picture shown. The signs are positive whenever the strand orhieh the arrow ends
is directed towards the vertex, and negative when directed awayrhe ambiguously drawn
vertex means any kind of vertex, but the same one throughout.

The CP relation (a cap can be pulled out from under a strand but notrém
over, Section6.1.2 implies that arrow heads near a cap are zero, as shown on th =0
right. Denote this relation also byCP. (Also note that a tail near a cap is not
set to zero.)

As in the previous sections, and in particular in De nition3.13 we de ne a \w-Jacobi
diagram” (or just \arrow diagram") on a foam skeleton by allowing tivalent chord vertices.
Denote the circuit algebra of formal linear combinations of arrow dggams by A"t We
have the following bracket-rise theorem:

Theorem 6.5. The obvious inqlusion qf diagrams induces a circuit algebraomorphism
AW = AW Fyrthermore, the AS and IHX relations of Figure 12 hold in A®%t,

Proof. Same as the proof of Theorer3.15

As in Section5.1, the primitive elements of A" are connected diagrams, namely trees
and wheels. Before moving on to the auxiliary operations &©®", let us make two useful
observations:

Lemma 6.6. AY(?), the part of AY with skeleton?, is isomorphic as a vector space to the
completed polynomial algebra freely generated by wheglswith k 1. Likewise As¥(?),
except herek 2.

Proof. Any arrow diagram with an arrow head at its top is zero by the Cap Pulbut (CP)

relation. If D is an arrow diagram that has a head somewhere on the skeleton but rat
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the top, then one can use repeate8TU relations to commute the head to the top at the
cost of diagrams with one fewer skeleton head.

Iterating this procedure, we can get rid of all arrow heads, and hee write D as a linear
combination of diagrams having no heads on the skeleton. All conted components of such
diagrams are wheels.

To prove that there are no relations between wheels iIAGY(), let S : AGW(")) |
AGW(") (resp. Sg) be the map that sends an arrow diagram to the sum of all ways of
dropping one left (resp. right) arrow (on a vertical strand, left neans down and right means
up). De ne

X(l)k

k!
k=0

whereDg, is the short right arrow as shown in Figurel3. We leave it as an exercise for the
reader to check thatF is a bi-algebra homomorphism that kills diagrams with an arrow head
at the top (i.e., CP is in the kernel ofF), and F is injective on wheels. This concludes the
proof.

F = DE(SL + SR)k;

Lemma 6.7. A®Y(Y)= AGW(",) where A®¥(Y) stands for the space of arrow diagrams
whose skeleton is & -graph with any orientation of the strands, and as befo® &% (",) is
the space of arrow diagrams on two strands.

Proof. =~ We can use the vertex invariance (VI) relation to push all arrow hets and tails
from the \trunk" of the vertex to the other two strands.

6.2.2. The auxiliary operations ofA(®". Recall from Section5.4 that the orientation switch
Se (i.e. changing both the D and 2D orientations of a strand) always changes the sign of
a crossing involving the strande. Hence, lettingS denote any foam (trivalent) skeleton, the
induced arrow diagrammatic operation is a magB.: AGY(S) | A OW(S,(S)) which acts
by multiplying each arrow diagram by ( 1) raised to the number of arrow endings om
(counting both heads and tails).

The adjoint operation A, (i.e. switching only the strand direction), on the other hand,
only changes the sign of a crossing when the strand being switchethis under- (or through)
strand. (See sectiorb.4 for pictures and explanation.) Therefore, the arrow diagrammatic
A. acts by switching the direction ofe and multiplying each arrow diagram by ( 1) raised
to the number ofarrow headson e. Note that in A®¥ (")) taking the adjoint on every strand
gives the adjoint map of De nition 5.18

zip (both to be denotedue, and interpreted appropriately accord-
ing to whether the strand e is capped) are mapsi: A®W(S) | e|
AW (ug(S)), where each arrow ending (head or tail) oe is mapped to a sum of two arrows,
one ending on each of the new strands, as shown on the right. Irhet words, if in an arrow
diagram D there arek arrow ends one, then ug(D) is a sum of % arrow diagrams.

The operation induced by deleting the long linear strana is the map de: A®Y(S) !
AGW(de(S)) which kills arrow diagrams with any arrow ending (head or tail) one, and

leaves all else unchanged, except withremoved.
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6.3. The homomorphic expansion.

Theorem 6.8. There exists a group-lik€ homomorphic expansion for WF°, i.e. a group-
like expansionZ : wTF° I A sW which is a map of circuit algebras and also intertwines the
auxiliary operations of WF° with their arrow diagrammatic counterparts.

Since bothwTF° and AS" are circuit algebras de ned by generators and relations, when
looking for a suitableZ all we have to do is to nd values for each of the generators of
WTF° so that these satisfy (inAs") the equations which arise from the relations iwTF°
and the homomorphicity requirement. In this section we will derive thse equations and
show that they are equivalent to the Alekseev-Torossian versiorf the Kashiwara-Vergne
equations AT]. In [AET] Alekseev Enriquez and Torossian construct explicit solutions to
these equations using associators. In a later paper we will interprinese results in our
context of homomorphic expansions for w-tangled foams.

Let R := Z( ) 2 A®Y(",). It follows from the Reidemeister 2 relation thatZ( ) =
(R 12, As discussed in Sections.1 and 5.5, Reidemeister 3 with group-likeness and homo-
morphicity implies that R = €*, wherea is a single arrow pointing from the over to the under
strand. Let C := Z(1) 2 A3Y(?). By Lemma 6.6, we know that C is made up of wheels only.
Finally, let V. = V* := Z(J.) 2 AY(J) = ASY(",),and V. = Z(y) 2 A%V () = ASY(")).

Before we translate each of the relations of Secti@nl.2to equations let us slightly extend
the notation used in Section5.5. Recall that R?3, for instance, meant \R placed on strands
2 and 3". In this section we also need notation such &?3?, which means R with its rst
strand doubled, placed on strands 2, 3 and 1".

Now on to the relations, note that Reidemeister 2 and 3 and Overgsings Commute
have already been dealt with. Of the two Reidemeister 4 relations, éhrst one induces an
equation that is automatically satis ed. Pictorially, the equation looks as follows:

R AT Ay R

In other words, we obtained the equation

V12R3(12) — R32R31V 12:

However, observe that by the \head-invariance" property of aow diagrams (Remark5.7)
V12 and R3'2 commute on the left hand side. Hence the left hand side equ&$\*?dVv1? =
R32R31y12 Also, R3(12) = ga”'+a® = ga” g™ = R32R31 where the second step is due to the
fact that a3' and a*>?> commute. Therefore, the equation is true independently of the ofte
of V.

We have no such luck with the second Reidemeister 4 relation, which,thre same manner
as in the paragraph above, translates to the equation

VlZR(12)3 — R23R13V12: (41)

35The formal de nition of the group-like property is along the lines of 2.5.1.2 In practise, it means that
the Z-values of the vertices, crossings, and cap (denoted, R and C below) are exponentials of linear
combinations of connected diagrams.
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There is no \tail invariance" of arrow diagrams, sovV and R do not commute on the left
hand side; alsoR(®?? 8 R%2R*3. As a result, this equation puts a genuine restriction on the
choice ofV.

The Cap Pull-out (CP) relation translates to the equationR*?C2 = C2. This is true
independently of the choice ofC: by head-invariance,R*?C2 = C2R'2. Now R!? is just
below the cap on strand 2, and the cap \kills heads", in other wordgvery term of R'? with
an arrow head at the top of strand 2 is zero. Hence, the only surung term of R'? is 1 (the
empty diagram), which makes the equation true.

The homomorphicity of the orientation switch operation was used tprove the uniqueness
of R in Theorem 5.22 The homomorphicity of the adjoint leads to the equationv =
A1A,(V) (see Figure24), eliminating V as an unknown. Note that we also silently assumed
these homomorphicity properties when we did not introduce 32 di ent values of the vertex
depending on the strand orientations.

Homomorphicity of the (annular) unzip operation leads to an equatio for V, which we
are going to refer to as \unitarity". This is illustrated in the gure below. Recall that A,
and A, denote the adjoint (direction switch) operation on strand 1 and 2espectively.

V. A1AL(V) 1
Reading o the equation, we have
V. AA(V)=1: (42)

Homomorphicity of the disk unzip leads to an equation fo€ which
we will refer to as the \cap equation”. The translation from homo- L
morphicity to equation is shown in the gure on the right. C, as we
introduced before, denotes theZ-value of the cap. Hence, the cap lu Zw l w
equation reads
Vc(12) Cch
victd = cic?  in A™(1) (43)

The homomorphicity of deleting long strands does not lead to an edi@n on its own,
however it was used to prove the uniqueness Bf (Theorem 5.22).

To summarize, we have reduced the problem of nding a homomorphéxpansionZ to
nding the Z-values of the (positive) vertex and the cap, denoted and C, subject to three
equations: the \hard Reidemeister 4" equation41); \unitarity of V" equation ( 42); and the
\cap equation"” (43).

6.4. The equivalence with the Alekseev-Torossian equations. First let us recall Alek-
seev and Torossian's formulation of the generalized Kashiwara-gee problem (seeAT,

Section 5.3)):
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Generalized KV problem:  Find an elementF 2 TAut , with the properties
F(x+y)=log(e¥¢); andj(F) 2 im(): (44)

Here™ tr; ! trpisdened by (d)(x;y) = a(x)+ a(y) a(log(e*e’)), where elements ofr,
are cyclic words in the lettersx andy. (See AT ], Equation (8)). Note that an element oftr
is a polynomial with no constant term in one variable. In other wordsthe second condition
says that there existsa 2 tr; such thatjF = a(x) + a(y) a(log(e*e”)).

Theorem 6.9. Theorem 6.8, namely the existence of a group-like homomorphic expamsio
for wTF°, is equivalent to the generalized Kashiwara-Vergne proivle

Proof. We have reduced the problem of nding a homomorphic expansion tading group-
like solutionsV and C to the hard Reidemeister 4 equation41), the unitarity equation (42),
and the cap equation 43).

Suppose we have found such solutions and write= €°e'®, whereb?2 tr$, D 2 tder, ay,
and whereu is the mapu: tder, ! A s¥(",) which plants the head of a tree above all of its
tails, as introduced in Section5.2. V can be written in this form without loss of generality
because wheels can always be brought to the bottom of a diagrant {lae possible cost of
more wheels). Furthermore) is group-like and hence it can be written in exponential form.
Similarly, write C = €° with ¢ 2 tr3.

Note that u(ay) is central in AS¥(",) and that replacing a solution {/; C) by (e"®V;C)
for any a 2 a, does not interfere with any of the equations41), (42) or (43). Hence we may
assume thatD does not contain any single arrows, that id) 2 tder,. Also, a solution (V; C)
in ASW can be lifted to a solution inAY by simply setting the degree one terms df and c
to be zero. It is easy to check that thib 2 tr, and c 2 tr; along with D still satisfy the
equations. (In fact, in AW (42) and (43) respectively imply that bis zero in degree 1, and
that the degree 1 term ofc is arbitrary, so we may as well assume it to be zero.) In light of
this we declare thatb2 tr, and c 2 try.

The hard Reidemeister 4 equation41) readsV1?R123 = R23R13y12  Denote the arrow
from strand 1 to strand 3 byx, and the arrow from strand 2 to strand 3 byy. Substituting
the known value forR and rearranging, we get

gD gty W b= et

Equivalently, e'® e*Ye YD = e Pe¥e*e”: Now on the right side there are only tails on the rst

two strands, hencee® commutes withe’e*, soe PeP cancels. Taking logarithm of both sides
we obtain €' (x + y)e YP = log &’e‘. Now for notational alignment with [AT] we switch

strands 1 and 2, which exchanges andy so we obtain:

eP” (x + y)e 'O* =|og e'¢’; (45)

The unitarity of V (Equation (42) translates to 1 = €°¢"® (€’e'®) ; where denotes the
adjoint map (De nition 5.18. Note that the adjoint switches the order of a product and
acts trivially on wheels. Also,e'® (e'?) = J(eP) = &), by Proposition 5.19 So we have
1 = ePd (€”)eP. Multiplying by e P on the right and by € on the left, we get 1 =e®e (¢”),
and again by switching strand 1 and 2 we arrive at

1= 2P (46)
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As for the cap equation, ifCt = €™ and C2 = &), then C'2 = “**¥), Note that wheels
on di erent strands commute, hencee®™)elY) = gX)*<¥) g0 the cap equation reads

Pl gC(x+y) = () c(y) -

As this equation lives in the space of arrow diagrams on tweappedstrands, we can multiply
the left side on the right bye YP: uD has its head at the top, so it is 0 by the Cap relation,
hencee'® =1 near the cap. Hence,

ebeuD ec(x+y)e ub — ec(x)+ c(y):

On the right side of the equation above
e'l efx*Y)e U reminds us of Equation 45), how-
ever we cannot use45) directly as we live in a dif- o
ferent space now. In particular,x there meant an
arrow from strand 1 to strand 3, while here it means

a one-wheel on (capped) strand 1, and similarly for
y. Fortunately, there is a map : AsY("3) ' A 3%¥(?,), where \closes the third strand and
turns it into a chord (or internal) strand, and caps the rst two strands", as shlown on the
rig|'1t. This map is well de ned (in fact, it kills almost all relations, and turns oneST U into
an'lHX ). Under this map, using our abusive notation, (x) = x and (y) = vy.

Now we can apply Equation 45 and get ePe®09¢'¢) = 09+ <y) - which, using that tails
commute, impliesb= c(x) + c(y) c(loge’e’). Switching strands 1 and 2, we obtain

Pl = o(x)+ c(y) c(loge‘e) (47)

In summary, we can use\(; C) to produceF := e (sorry®®) which satis es the Alekseev-
Torossian equations 44): e®* acts onlie, by conjugation by €', so the rst part of (44)
is implied by (45). The second half of 44) is true due to (46) and (47).

On the other hand, suppose that we have founB 2 TAut, and a 2 tr, satisfying (44).

. 21
Then setD?' :=log F, ! := # andc2 ~ 1(b*), in particular c= § works. Then

V = €e¢P and C = ¢° satisfy the equations for homomorphic expansionstl), (42) and
(493).

6.5. The wen. A topological feature of w-tangled foams which we excluded frometheory
so far is the werw. The wen was introduced in2.5.4as a Klein bottle cut apart; it amounts
to changing the 2D orientation of a tube, as shown in the picture beio

|

W == . =

|

36We apologize for the annoying 25 1 transposition in this equation, which makes some later equations,
especially 62), uglier than they could have been. There is no depth here, just mignatching conventions
between us and Alekseev-Torossian.
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In this section we study the circuit algebra of w-Tangled Foams withhie wen rightfully
included as a generator, and denote this space WIF.

6.5.1. The relations and auxiliary operations of WF. Adding the wen as a generator means
we have to impose additional relations involving the wen to keep ourgological heuristics
intact, as follows:

The interaction of a wen and a crossing has already been mentionedSection2.5.4 and
is described by Equation {6), which we repeat here for convenience:

Recall that in ying ring language, a wen is a ring ipping over. It does ot matter whether
ring B ips rst and then ies through ring A or vice versa. However, the movies in which
ring A rst ips and then ring B ies through it, or B ies through A rs t and then A ips
di er in the y-through direction, which is cancelled by virtual crossings, as in the gure
above. We will refer to these relations as the Flip Relations, and aldriate them by FR.

A double ip is homotopic to no ip, in other words two consecutive wes equal no wen.
Let us denote this relation byW?, for Wen squared. Note that this relation explains why
there are no \left and right wens".

A cap can slide through a wen, hence a capped wen disappea
as shown on the right, to be denote(CW. W == ==

The last wen relation describes the interaction of wens and ver-
tices. Recall that there are four types of vertices with the same
strand orientation: among the bottom two bands (in the pictures
on the left) there is a non- lled and a lled band (corresponding to
over/under in the strand diagrams), meaning the \large" ring and

$ the \small" one which ies into it before they merge. Furthermore,
there is a top and a bottom band (among these bottom two, with
apologies for the ambiguity in overusing the word bottom): this
denotes the y-in direction (ying in from below or from above).
Conjugating a vertex by three wens switches the top and bottom
bands, as shown in the gure on the left: if both rings ip, then
merge, and then the merged ring ips again, this is homotopic to
$ no ips, except the y-in direction (from below or from above) has
changed. We are going to denote this relation LTV, for \twisted
vertex".
The auxiliary operations are the same as fonTF°: orientation switches, adjoints, dele-
tion of long linear strands, cap unzips and unzigsé Thus, informally we can say that
WTF = (WTF° +wens)=FR; W?;CW; TV.

37We need not specify how to unzip an edgee that carries a wen. To unzip suche, rst use the TV
relation to slide the wen o e.
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6.5.2. The projectivization. The projectivization of WI'F (still denoted A®Y) is the same as
the projectivization for wI'F° but with the wen added as a generator (a degree 0 skeleton
feature), and with extra relations describing the behaviour of thaven. Of course, the
relations describing the interaction or wens with the other skeletofeatures W2, TV, and

CW) still apply, as well as the old RI,4T, and TC relations.
In addition, the Flip Relations FR imply that wens \commute" with arrow heads, but
\anti-commute" with tails. We also call these FR relations:

EF b

6.5.3. The homomorphic expansionThe goal of this section is to prove that there exists a
homomorphic expansiorZ for wI'F. This involves solving a similar system of equations to
Section6.3, but with an added unknown for the value of the wen, as well as addlequations
arising from the wen relations. LetW 2 A (";) denote the Z-value of the wen, and let us
agree that the arrow diagramW always appears just above the wen on the skeleton. In fact,
we are going to show that there exists a homomorphic expansion wild = 1.

As two consecutive wens on the skeleton cancel, we obtain the etia shown in the
picture and explained below:

[3@[@

TW

W W
The Z-value of two consecutive wens on a strand is a skeleton wen follovisgdWV followed by
a skeleton wen and anothew. Sliding the bottom W through the skeleton wen \multiplies
each tail by ( 1)". Let us denote this operation by \bar", i.e. for an arrow diagran D,
D =D ( 1)#ofwisin D Cancelling the two skeleton wens, we obtail'wW =1. If W =1
then this equation is certainly satis ed.

Now recall the Twisted Vertex relation of Sectior6.5.1. Note that the negative theZ-value
of the vertex on the right hand side of the relation can be written a$,S,A;A»(V) = (V).
(Compare with Remark 6.3.)) On the other hand, applyingZ to the left hand side of the
relation, assumingW =1, we get:

W W
e A T
Vv _ \%
N

Thus, the equation arising from the twisted vertex relation withW = 1 is automatically
satis ed.

The CW (Capped Wen) relation says that a cap can slide through a wernThe value of
the wen is 1, but the wen as a skeleton feature anti-commutes withils (this is the Flip

Relation of Section6.2.7). The value of the capC is made up of only wheels (Lemm&.6),
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hence the CW relation translates to the equatiol€ = C, which is equivalent to saying that
C consists only of even wheels.

The fact that this is possible follows from Proposition 6.2 ofqT ]: the value of the cap is
C = ¢€°, where can be settac = 3, as explained in the proof of Theorent.9. Herea is

such that 7(a) = jF as in Equation44. A power seriesf so thata =tr f (where tr is the
trace which turns words into cyclic words) is called the Du o functionof F. In Proposition

6.2 Alekseev and Torossian show that the even part bfis %M and that for any
f with this even part there is a corresponding solutiorr of the generalizedkV problem.
In particular, f can be assumed to be even, namely the power series above, andddncan
be guaranteed thatC consists of even wheels only. Thus we have proven the following:

Theorem 6.10. There exists a group-like homomorphic expansiah: wTF I A SV,

6.6. The relationship with u-Knotted Trivalent Graphs. The \usual", or classical
topological objects corresponding twTF are loosely speaking Knotted Trivalent Graphs, or
KTGs. A trivalent graph is a graph with three edges meeting at eachevtex, equipped with
a cyclic orientation of the three half-edges at each vertex. KTGgaframed embeddings of
trivalent graphs into R3, regarded up to isotopies. The skeleton of a KTG is the trivalent
graph (as a combinatorial object) behind it. For a detailed introdutton to KTGs see for
example BND1]. Here we only recall the most important facts. The reader might call that
in Section 3 we only dealt with long w-knots, as thew-theory of round knots is essentially
trivial (see Theorem3.18. A similar issue arises with w-knotted trivalent graphs”. Hence,
the space we are really interested in is \long KTGs", in other words ivalent (1;1)-tangles
whose \top end" is connected to the \bottom end" by some path alaog the tangle.

Long KTGs form an algebraic struc- X . / \%—/
ture with the operations orientation P \ /ﬁ Ue( )
switch; edge unzip (as shown on the
right); and tangle insertion (l.e., in- | |
serting a small copy of a (11)-tangle S | ST
S into the middle of some strand of | 1 ‘ T s 1 T
a (L;1)-tangle T, also shown on the | - - } S
right. It is a slightly weaker operation I {
than the connected sum ofBND1]). The projectivization of the space of long KTGs is
the spaceA" of chord diagrams on long trivalent graph skeleta, modulo th4T and vertex
invariance (VI) relations. The induced operations oA"Y are as expected: orientation switch
multiplies a chord diagram by ( 1) to the number of chord endings on the edge. Edge unzips
ue maps a chord diagram withk chord endings on the edge to a sum of ¥ diagrams where
each chord ending has a choice between the two daughter edgemally, tangle insertion
induces the insertion of chord diagrams.
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expansion for KTGs. This theorem, as well as the proof, applies
to long KTGs with slight modi cations. There is a well-known
expansion constructed by extending the Kontsevich integral to
KTGs and renormalizing at the vertices. There are several con-
structions that do this ([MO], [CL], [Da]), and not all of these are
\compatible" with a corresponding Z". For now, let us choose
one (any) such expansion and following the notation oBND1]
denote it by Z°9, It turns out that any of the above Z°! is almost old old
h ) o . . ) . Z°9( ) Z%%u( ))
omomorphic but not quite: they all intertwine the orientation
switch, strand delete and tangle composition operations with theihord-diagrammatic coun-
terparts, but commutativity with unzip fails by a controlled amount, as shown on the right.
Here denotes the \invariant of the unknot", the value of which was corgctured in BGRT1]
and proven in BLT].

In [BND1] the authors x this anomaly by slightly changing the space of KTGs ad adding
some extra combinatorics (\dots" on the edges), and construethomomorphic expansion for
this new space by a slight adjustment of °“. Here we are going to use a similar but di erent
adjustment of the space of long KTGs, namely breaking the symmgtof the vertices and
restricting the domain of unzip.

In this model, denoted bysKTG for \signed long KTGs", each vertex has a distinguished
edge coming out of it (denoted by a thick line in Figure6), as well as a sign. Our pictorial
convention will be that a vertex drawn in a \ " shape with all strands oriented up and the
top strand distinguished is always positive and a vertex drawn in a\" shape with strands
oriented up and the bottom strand distinguished is always negativas in Figure 26.

Orientation switch of either of the non-distinguished strands chages the sign of the vertex,
switching the orientation of the distinguished strand does not. Uz of an edge is only
allowed if the edge is distinguished at both of its ends and the vertices either end are of
opposite signs.

In [BND1] the authors prove that there is nohomomorphic ; _/l
+

The homomorphic expansioZ": KTG!'A ¢
is computed fromZ°! as follows. First of all we .
need to interpret Z°9 as an invariant of (1;1)- e = 1z
tangles. This is done by connecting the top and
bottom ends by a non-interacting long strand followed by a normaliz@n, as shown on the
right. By \multiplying by " we mean that after computingZ°“ we insert ! on the long
strand.

To compute Z! from Z° the following normalizations are added near the vertices, as in
Figure 26. Note that in that gure the symbol ¢ denotes a horizontal chord going from left
to right, and e “* denotes the exponential of c=4 in a sense similar to the exponentiation
of arrows in Equation (L5).

Checking that Z" is a homomorphic expansion is a simple calculation using the almost
homomorphicity of Z°9, which we leave to the reader. Now let us move on the the question
of compatibility betweenZ" and Z% (from now on we are going to refer to the homomorphic
expansion ofwTF {called Z in the previous section{ asZ" to avoid confusion).
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Figure 26. Normalizations forZY at the vertices.

KTG 2 MnNTE Thereisamapa: KTG ! WTF, given by interpreting KTG diagrams
asWTIF diagrams. In particular, positive vertices (of edge orientations
shown above) are interpreted as the positiveTF vertex J<and negative
vertices as the negativi <. The induced map : A ! A "isde ned as
in Section5.3, that is, maps each chord to the sum of its two possible
orientations. Now we can ask the question whether the square dretleft commutes, or more
precisely, whether we can choosg¢" and Z% so that it does.

As a rst step to answering this question, we prove thatKTG is nitely generated (and
therefore Z" is determined by its values on nitely many generators, and these haes will
later be compared with the values/ and C that determine Z%):

Zu zv
AU //Asw

Proposition 6.11. The algebraic structure KTG is nitely generated by the following list

CLeitEgpb

strand  bubble 19Nt left right

. . . . balloon noose
twist  twist  associator associator

Proof.  First of all note that throughout this proof (in fact even in the staement of the
proposition) we are ignoring the issue of strand orientations. We alo this as orientation
switches are allowed ireKTG without restriction. We are also going to omit vertex signs
from the pictures given the pictorial convention stated before.

We need to prove that anyKTG (call it G) can be built from the generators above using
KTG operations. To show this, consider a Morse drawing &, that is, a planar projection
of G with a height function so that all singularities along the strands are Mrse and so that
every \feature" of the projection (local minima and maxima, crosags and vertices) occurs
at a di erent height.

The idea in short is to decomposé& into levels of this Morse drawing where at each level
only one \feature" occurs. The levels themselves are na&TG's, but we show that the
composition of the levels can be achieved by composing their \closggl* KTG versions
followed by some unzips. Each feature gives rise to a generator lgtdsing up" extra ends
at its top and bottom. We then show that we can construct each |l& using the generators
and the tangle insert operation.

So let us decompos& into a composition of trivalent tangles, each of which has one

\feature" and (possibly) some straight vertical strands. An exmple is shown in the gure
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below. Note that these tangles are not necessarily ;@)-tangles, and hence need not be
elements ofKTG. However, we can turn each of them into a (1)-tangle by \closing up"
their tops and bottoms by arbitrary trees. In the example below wshow this for one level
of the Morse-drawnKTG containing a crossing and two vertical strands.

Now we can compose theKTG's obtained from closing up each level, as tangle composi-
tion is a special case of tangle insertion. Each tree that we used tose up the tops and
bottoms of levels determines a \parenthesization" of the strandnelings. If these parenthe-
sizations match on the top of each level with the bottom of the nexthen we can recreate
tangle composition of the levels by composing their closed versiond@ed by a number of
unzips performed on the connecting trees. This is illustrated in thexample below, for two
consecutive levels of theKTG of the previous example.

| WAy

unzips
Y_ —~—~

2]

If the trees used to close up consecutive levels correspond to deet parenthesizations,
then we can use insertion of the left and right associators (the lastio pictures of the list
of generators in the statement of the theorem) to change onerpathesization to match the
other. This is illustrated in the gure below.

LA L~ _
inser.t unZ|p nZIQS ~
associator - -this edge edge

JIX

So far we have shown thaG can be assembled from closed versions of the levels in its
Morse drawing. The closed versions of the levels Gfare simplerKTG's, and it remains to
show that these can be obtained from the generators usid§TG operations.
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Let us examine what each level might look like. First of all,
in the absence of any \features" a level might be a single strand, [ B ] " close =
in which case it is the rst generator itself. Two parallel strands ----- "P
when closed up become the \bubble", as shown on the right.

Now suppose that a level consists of parallel strands, and that the trees used to close
it up on the top and bottom are horizontal mirror images of each o#r, as shown below (if
not, then this can be achieved by associator insertions and unzips)Me want to show that
this KTG can be obtained from the generators usindKTG operations. Indeed, this can be
achieved by repeatedly inserting bubbles into a bubble, as shown:

T1]e())) -

A level consisting of a single crossing becomes a left or right twist whelosed up (de-
pending on the sign of the crossing). Similarly, a single vertex becosna bubble. A level
can not contain a single minimum or maximum by itself, since we requiredhat the top end
of an KTG be connected to its bottom end via a path. Hence, any minimum or mamum
must be accompanied by at least one through strand. A maximum witbne through strand
becomes the balloon after closing up, and a minimum with one throughrand becomes the
noose.

It remains to see that thesKTG's obtained when closing up simple features accompanied
by more through strands can be built from the generators. This ischieved by inserting
the corresponding generators into nested bubbles (bubbles irtserinto bubbles), as in the
example shown below. Recall that the trees (parenthesizationsyad for the closing up
process can be changed arbitrarily by inserting associators andzipping, and hence we are
free to use the most convenient tree in the example below. This colaes the proof.

TSI s @ @

We are now equipped to answer the main question of this section:

Theorem 6.12. There exists a homomorphic expansion for KTG 2 JNTF
the combined algebraic structuresKTG !* WTF . In other S ‘zw (48)

words, there exist homomorphic expansiors! and Z"% for u In sw
which the square on the right commutes. A A

Before moving on to the proof let us state and prove the following bema, to be used
repeatedly in the proof of the theorem.

Lemma 6.13. If a and b are group-like elements inAS¥(",), then a = b if and only if
(a) = (b andaa = bb. Here is the projection induced by : P¥(",) ! tder, a,
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(see Sections.2), and refers to the adjoint map of De nition 5.18 In the notation of this
section is applying the adjointA on all strands.

Proof. Write a = e¥e'® and b = e"’e’°°, wherew 2 tr,, D 2 tder, a, and
u: tder, a, ! P , is the \upper" map of Section5.2. Assume that (a) = (b) and
aa = bb. Since (a) = €® and (b) = €°°, we conclude thatD = D° Now we compute
aa = e'ePe Pe¥ = g"d(P)g": wherej : tder, ! tr, is the map de ned in Section 5.1 of
[AT ] and discussed irb.190f this paper. Now note that bothw andj (D) are elements ofr,,
hence they commute, s@a = €?*1(®). Thus, aa = bb means thate2¥*i(®) = gw*i(®)
which implies thatw = wand a= h.

Proof of Theorem6.12. Since KTG is nitely generated, we only need to check that the
square @8) commutes for each of the generators.

Proof of commutativity of (48) for the strand and the bubbleFor the single strand commu-
tativity is obvious: both the Z" and Z" values are trivial.

We claim that the ZY value of the bubble is also trivial.
By connecting the top and bottom of the bubble we ob-

old —
tain a \theta-graph", and Z°° of a theta graph has z -
on each strand, as shown on the right (for a computa-
tion see BND1] for example). After applying the vertex
normalizations of Figure 26, everything cancels, so the Zw B

Z"-value of the bubble is trivial. As forz"Y, the value of
the bubble isV V, as shown, which equals to 1 by the
Unitarity property of V, Equation (42). This proves the commutativity of the square for
bubbles.
Proof of commutativity of (48) for the twists. First note that the Z"-value of the right twist
is RY = €2, where ¢ denotes a single chord between the two twisted strands (sé&N\[D1]
for details). Hence the commutativity ofZY and Z% for the right twist is equivalent to the
\Twist Equation" (RY) = V !RV?!, whereR = €% is the Z¥-value of the crossing, that
is, the exponential of a single arrow pointing from strand 1 to strah2. By de nition of
(RY) = e%(alz+a21), where a;» and ay; are single arrows pointing from strand 1 to 2 and 2
to 1, respectively. So the Twist Equation becomes

ex(mzrea) = v 1RV (49)

If V is to give rise to a homomorphic expansiod" that is compatible with ZY, then V has
to satisfy the Twist Equation in addition to the previous equations 41),(42) and (43). To
prove that such aV exists, we use Lemm#&.12 Lemma 6.13 implies that it is enough to
nd a V which satis es the Twist Equation \on tree level" (i.e., after applying ), and for
which the adjoint condition of the Lemma holds.

Let us start with the adjoint condition. Multiplying the left hand side of the Twist
Equation by its adjoint, we get

e%(a12+a21)(e%(812+321)) = e%(a12+a21)e L(arp+an) — 1:

As for the right hand side, we have to comput® RV?Z}(V2) R (V 1) . SinceV is unitary
(Equation (42), VV =V Aj;A»(V)=1. Now R = €2, soR = e 22 = R 1, hence the
expression on the right hand side also simpli es to 1, as needed.
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As for the \tree level" of the Twist Equation, recall that in Section 6.3 we deduced the
existence of a solution to all the previous equations from AlekseemdaTorossian's solution
F 2 TAut, to the Kashiwara{Vergne equations AT]. We producedV from F by setting

F = €™ with D 2 tdes, b:= {2 2 tr, and V := €%e'®, soF is \the tree part” of V, up
to re-numbering strands. Substituting this into the Twist Equationwe obtain:
e2(Aiz+22) = @ UD g bz g gD (50)

Applying , we get
e%(a12+a21) — @ UD gaz gD A _ ( F21) Py =

The existence of a solutior of the KV equations which also satis es the above is equivalent
to the existence of \symmetric solutions of the Kashiwara-Vergnproblem" discussed and
proven in Sections 8.2 and 8.3 ofA]' ] (note that in [AT] R denotese®*!).
Proof of commutativity of (48) for the associators.Let us recall that a Drinfel'd associator
is a group-like element oAY("3) satisfying the so-called pentagon and positive and negative
hexagon equations, as well as a non-degeneracy and mirror skswmetry property. For a
detailed explanation see Section 4 dBND1]; associators were rst de ned in Pr2]. The Z"-
value of the generator shown in the statement of Propositiof. 11 called \right associator” is
a Drinfel'd associator. The proof of this statement is the same asdiproof of Theorem 4.2
of [BND1], with minor modi cations. (l.e., the graphs have positive and negate vertices
as opposed to \dots and crosses” on the edges. Note that therte& re-normalizations for
the four vertices of an associator cancel each other out). Les gall this associatot .

What we need to show is that there exists & satisfying all previous equations including
the Twist Equation (49), so that

()= V(12)3V12V23V1(23) in ASW(I|3); (51)

where : AY!A %" isthe map de ned in Section5.3, and keeping in mind thatvV =V 1.
The reasoning behind this equation is shown in the gure below.

] Using V| to push to
/T the middle three strands.

We proceed in a similar manner as we did for the Twist Equation, treatmthe \tree and
wheel parts" separately using Lemmd&.13 As is by de nition group-like, let us denote
= e.
First we verify that the \wheel level" adjoint condition holds. Starting with the right hand
side of Equation §1), the unitarity VV =1 of V implies that

vV (12)3 V 12\ 23/ 1(23) vV 1(23)) (V 23) (v 12) vV (12)3) =1:

For the left hand side of 61) we need to studye ()(e ()) and show that it equals 1 as
well. This is assured if we pick &' for which is a group-like horizontal chord associator

(possible for example using(L], as mentioned at the beginning of this section). Indeed
88



restricted to the -images of horizontal chords is multiplication by 1, and as it is an
anti-Lie morphism, this fact extends to the Lie algebra generatedyb -images of horizontal
chords. Hencee ()(e ()) = e e () =elle () =1,

On to the tree part. Applying to Equation (51) we obtain

e ()= (F3(12)) 1(F21) IE32E @31 = ¢ D (123 e Dl?eD23eD1<23>
in SAut; := exp(sdeg) TAutsz: (52)

This is Equation (26) of [AT], up to re-numbering strands 1 and 2 as 2 and®® To prove
it in our context, we need the following fact from AT ] (their Theorem 7.5, Propositions 9.2
and 9.3 combined):

Fact 6.14. If °= e ’is an associator inSAut; so thatj (9 = 0% then Equation 62) has
a solution F = €?* which is also a solution to the KV equations, and all such sthns are
symmetric (i.e. verify the Twist Equation §0)).

To use this fact, we need to show that °:= () is an associator in SAut; and that
i 9=j( ())=0. The latter is the unitarity of which is already proven. The f ormer
follows from the fact that is an associator and the fact (Theorem5.20 that the image
of is contained insder (ignoring degree 1 terms, which are not present in an associator

anyway).

Proof of commutativity of (48) for the balloon and the noose.
Connecting the top and bottom end of the noose picture
creates a \dumbbell graph", andZ°? of the dumbbell is
a placed on each of the circles with nothing on the line
connecting them. Applying the vertex normalizations and the ! normalization on the long
strand, we obtain that Z" of the noose has chords only on the circle, namely®* 2, as
shown on the right. We leave it to the reader to check this, keeping imind the fact that
in AY, any chord diagram with chord endings on a bridge in the graph (i.e., adge whose
deletion increases the number of connected components) is zektso keep in mind that the
bottom vertex is not a positive vertex: the orientation of the left g#and is switched, so we
have to apply an orientation switch operation of that strand to thevalue of the normalization.
As S( ) = , this only a ects the sign of the exponent. A similar computation carbe done
for the balloon, where the result i*** *2 on the circle.

A -

ZY on the other hand assigns & value to each vertex, one
of which has its rst strand orientation switched as shown in _,,
the gure on the right. The top copy of V appearing there Z
cancels: pushing arrow heads and tails onto the noose using
VI results in two terms that have opposite signs but are otherwisegaal (we can slide arrow

38Note that in [AT]\ Ois an associator' means that ° satis es the pentagon equation, mirror skew-
symmetry, and positive and negative hexagon equations in the sp&cSAut;. These equations are stated in
[AT] as equations (25), (29), (30), and (31), and the hexagon equi@ns are stated with strands 1 and 2
re-named to 2 and 1 as compared to[jr2] and [BND1]. This is consistent with F = & “
39The condition j ( 9 = 0 is equivalent to the condition 2 KRV in [AT]. The relevant de nitions in
[AT] can be found in Remark 4.2 and at the bottom of page 434 (beforeegtion 5.2).
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Figure 27. The product equation.

heads/tails across theS;(V) term as anything concentrated on one strand is a combination

of wheels andD, arrows, and we can slide across these usidg/TC).
Hence, what we need to show is that the two equations below holdjsang from the noose
and the balloon, respectively.

We will start by proving that the product of these two equations, Bown in Figure 27, is
satis ed. Note that any local (small) arrow diagram on a single strashis central in AV (",):
a diagram on one strand can be written in terms oflonly wheels and istdd arrows, both

of which commute with both arrow heads and tails byT and TC. Hence we can slide and
merge the ( ) terms as we wish.

To show that the product equation is satis ed, consider Figur@8. We start with the wTF
on the top left and either applyZ" followed by unzipping the edges marked by stars, or rst
unzip the same edges and then appB". We use that by the compatibility with associators,
Z"Y of an associator is (). Since Z"Y is homomorphic, the two results in the bottom right
corner must agree. (Note that two of the four unzips we perforrare \illegal”, as the strand
directions don't match. However, it is easy to get around this issueytnserting small bubbles
at the top of the balloon and the bottom of the noose, and switchinthe appropriate edge
orientations before and after the unzips. Th&"Y-value of a bubble is 1, hence this will not
e ect the computation and so we ignore the issue for simplicity.)

We conclude that to prove that the product equation of Figure7 is satis ed, it is enough
to show that the left equality of Figure 29 holds. Note that in Figure 29 the inverse is taken
in ASY("1). As both sides of this equation are in the image of, it is enough to prove the
pre-image of the equation inAY, as shown on the right of Figure29. That equation in turn
follows from an argument identical to that of Figure28 but carried out in KTG and AY,
using that Z" is homomorphic with respect to tangle insertion. This nishes the praf that
the product of the noose and balloon equations holds.

What remains is to show that the noose and balloon equations hold indtiwally. In light
of the results so far, it is su cient to show that
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Figure 28. Unzipping a noose and a balloon to a squiggle.

1

Figure 29. The reduced noose and balloon equation.

As stated in Theorem3.16 AS¥(",) is the polynomial algebra freely generated by the arrow
D, and wheels of degrees 2 and higher. Singeis group-like, the \one-strand version"
of S;(V) (resp. S;(V )) shown in Equation (53) is an exponential e*t (resp. €*2) with
A A, 2 ASW(",). We want to show that e*t = e*2 e P, equivalently that A; = A, Da.

In degree 1, this can be done by explicit veri cation. LeA, * and A, denote the degree
2 and higher parts ofA; and A,, respectively. We claim that capping the strand at both its
top and its bottom takes €*1 to €*:”, and similarly €*2 to €*2". (In other words, capping
kills arrows but leaves wheels un-changed.) This can be proven similatty the proof of
Lemma6.6, but using

s ( 1)k1+ k2
k1'ky!
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Figure 30. The proof of Equation $4). Note that the unzips are \illegal", as the strand
directions don't match. This can be xed by inserting a smalltihle at the bottom of the
noose and doing a number of orientation switches. As this dideshange the result or the
main argument, we suppress the issue for simplicity. Equaiibd) is obtained from this
result by multiplying byS(C) * on the bottom and byC ! on the top.

in place ofF in the proof. What we want to show, then, is that

r 1 T 1
Su(V) = [S(V) | (54)
N N

The proof of this is shown in Figure30.

Having veri ed the commutativity of (48) for all the generators of KTG appearing in
Proposition 6.11, we have concluded the proof of Theorei®.12

Recall from Section5.3 that there is no commutative square linkingZY: uT ' A Y and
Z%Y:wr ! A ¥ for the simple reason that the Kontsevich integral for tangleg" is not
canonical, but depends on a choice of parenthesizations for theottom" and the \top"
strands of a tangleT. Yet given such choices, a tangl& can be \closed" as within the proof
of Proposition6.11into an KTG which we will denoteG. For G a commutativity statement
does hold as we have just proven. Th&" and Z% invariants of T and of G di er only by
a number of vertex-normalizations and vertex-values on skeletdrees at the bottom or at
the top of G, and using VI, these values can slide so they are placed on the oridiskeleton
of T. This is summarized as the following proposition:

Proposition 6.15. Let n and n® be natural numbers. Given choices and andc® of paren-
thesizations ofn and n° strands respectively, there exists invertible elemen® 2 ASV(",)
and C°2 ASW(" o) so that for any u-tangleT with n \bottom" ends and n° \top" ends we
have

Z {o(T)= C 'z"(aT)C",
whereZ ¢, denotes the usual Kontsevich integral af with bottom and top parenthesizations
c and c®.

For u-braids the above proposition may be stated witlt = c® and then C and C° are the
same.
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7. Odds and Ends

7.1. What means \closed form"? As stated earlier, one of my hopes for this paper is that
it will lead to closed-form formulae for tree-level associators. Theotion \closgd-form" in
itself requires an explanation (see footnot8). Is € a closed form expression for Lo Xn—”, or
is it just an arti cial name given for a transcendental function we annot otherwise reduce?
Likewise, why not call some tree-level associator™® and now it is \in closed form"?

For us, \closed-form" should mean \useful for computations”. Mre precisely, it means
that the quantity in question is an element of some spadg® of \useful closed-form thingies"
whose elements have nite descriptions (hopefully, nite and shoytand on which some oper-
ations are de ned by algorithms which terminate in nite time (hopefdly, nite and short).
Furthermore, there should be a nite-time algorithm to decide whdier two descriptions of
elements ofA°" describe the same elemefit It is even better if the said decision algorithm
takes the form \bring each of the two elements in question to a canical form by means of
some nite (and hopefully short) procedure, and then compare #hcanonical forms verba-
tim"; if this is the case, many algorithms that involve managing a largeumber of elements
become simpler and faster.

Thus for example, polynomials in a variablex are always of closed form, for they are
simply described by nite sequences of integers (which in themselvase nite sequences
of digits), the standard operations on polynomials (+, , and, say, %) are algorithmically
computable, and it is easy to write the \polynomial equality" compute program. Likewise
for rational functions and even for rational functions ok and €.

On the other hand, general elements of the spacA™™e(";) of potential tree-level asso-
ciators are not closed-form, for they are determined by in nitely rany coe cients. Thus
iterative constructions of associators, such as the one iBN3] are computationally useful
only within bounded-degree quotients ofA (" 3) and not as all-degree closed-form formulae.
Likewise, \explicit" formulae for an associator in terms of multiple -values (e.g. [M1])
are not useful for computations as it is not clear how to apply tangitheoretic operations
to (suchas 7! ¥%2or 7! (1 1) ) while staying within some space of \objects
with nite description in terms of multiple -values". And even if a reasonable space of such
objects could be de ned, it remains an open problem to decide whetha given rational
linear combination of multiple -values is equal to O.

7.2. Arrow Diagrams to Degree 2.  Just as an example, in this section we study the
spacesA ("), As ("), A" ("),P ("),A ( ),A® ( ),and A" ( )indegreesm 2in
detail, both in the \v" case and in the \w" case (the \u" case has bee known since long).

7.2.1. Arrow Diagrams in Degree 0.There is only one degree 0 arrow diagram, the empty
diagramDg (see Figure31). There are no relations, and thug Dqg is the basis of allgbA (")
spaces and its obvious closure, the empty circle, is the basis of @A ( ) spaces.Dg is
theunit 1, yet Dg=Dg Dg=1 16 Dy 1+1 Dg, soDg is not primitive and
dmG&GP (") =0.

40In our context, if it is hard to decide within the target space of an invariant whether two elements are
equal or not, the invariant is not too useful in deciding whether two knotted objects are equal or not.
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Do= — Dlz_éﬁl9 D4:_m D7:A Dig= /N /N
DR:A D2:_m> D5:A Dgz_@9 Dyp = /AN /N
Dl= £ Dy= XN Der LN Doz AN D= A

Figure 31. The 15 arrow diagrams of degree at most 2.

7.2.2. Arrow Diagrams in Degree 1.There is only two degree 1 arrow diagrams, the \right
arrow" diagram Dr and the \left arrow" diagram D, (see Figure31). There are no @
relations, and thusfDg;D_g is the basis of GA ("). Modulo RI, D, = Dr and hence
Da := D = Dg is the single basis element @, A° ("). Both Dg and D vanish modulo Fl,
so dimGA" (") =dim GA" ( )=0. Both Dgr andD_ are primitive, so dimGP (") = 2.
Finally, the closuresDr and D_ of Dgr and D, are equal, soGAS ( )= GA ( ) =
H:)Ri = le = H:)/_\l

7.2.3. Arrow Diagrams in Degree 2. There are 12 degree 2 arrow diagrams, which we denote

ordering the 3 vertical strands that appear in a & relation (see Figure3) along a long
line. The ordering (jk ) becomes the relationD3; + Dg + D3 = Dg + D3 + Dg. Likewise,
(ikj) 7! Dg+ D1+ D1y = D3+ Ds+ Dy, (jik) 7! Dyp+ D2+ Dg = Do+ Ds + Ds,
(jki) 7' Ds+ D7+ Dy = Dg+ Dy + Dyg, (Kij) 7! Do+ D7+ Dy = Dyg+ Dy + Dg,
and (kji) 7! Dg+ D4+ Dg = D4+ Dy, + Dy. After some linear algebra, we nd that
fD1;D;; Dg; Dg; Dg; D11; D1og form a basis of GAY("), and that the remaining diagrams
reduce to the basis as followsD3 = 2Dg Dy, D4 = 2Dg Djy, Ds = Dg+ D11 Dg,
D;=Dy1+ Dy, Deg, and Dig= D11. In GQASV(") we further have that D5 = D¢, D7 = Dy,
and Dg = Dyg = D13 = Dy, and so GA®Y(") is 3-dimensional with basisD,, D,, and
D3 = :::= Dy In GA"™ (") we further have that D5 1, = 0. Thus fD;;D,g is a basis of
GA™(").

There are 3 OC relations to write forGAY("): D, = Do, D3z = Dg, and D4 = Deg.
Along with the 6T relations, we nd that fD;;D3 = Dg = Dg;D, = Ds = D; = Dy =
Di11;D4 = Dg= Dypgis a basis oiGAY("). Similarly fD4; D, = :::= D1,0is a basis of the
two-dimensional GA®Y("). When we mod out by FI, only one diagram remains non-zero in
GA™ (") and itis Dj.

We leave the determination of the primitives and the spaces with a clecskeleton as an
exercise to the reader.
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8. Glossary of

Greek letters, then Latin, then symbols:

mapsAY!A VorAYlA W 255
cloning, co-product 25.1.2 4.2
Satoh's tube map 3.1.1
A a formal D 3.8
inversion, antipode 25.1.1
an inclusionwB, ! wWBp41 2.2.3
interpretation map 3.8, 3.8.2
inclusiontr, 'P Y("p) 5.2
a formal EZ 3.8
the invariant of the unknot 6.6
i the generators ofF, 2.2.3
the projection P¥(",)! a, tder, 5.2
a virtual surface 3.1.1
i a crossing between adjacent strandg.1.1
i strand i crosses over strand 2.1.2
& the skeleton morphism 211
log of an associator 6.6
an associator 6.6
(') abasis ofg 3.6
\operations" 4.1
Iq a formal 1-wheel 3.8
an n-dimensional Abelian Lie algebra 5.2
A a candidate projectivization 4.3
A(G) associated graded ofG 2.3.2
AsY DY mod 6T, RI 5.1
ASYW DY mod 4T, TC, RI 5.1
ASY  projwrF° 6.2
AW projwTF 6.5.2
AGW AW and/or ASW 6.2
AY chord diagrams mod rels for KTGs 6.6
AY DY mod 6T 5.1
AY DY mod'4T, TC 5.1
AV proj wTF° without RI 6.2
A ("n) A for pure n-tangles 5.2
A, Dy mod relations 2.3.1
Al A allowing trivalent vertices 3.5
A (") DVY(") mod relations 3.2
A ( ) A (") for round skeletons 3.3,
AY usual chord diagrams 3.9 °
A(K) the Alexander polynomial 3.7
Ae 1D orientation reversal 6.1.3
AS arrow-AS relations 3.5 |
Ass associative words 5.2
Ass"  non-empty associative words 5.2
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notation

a mapsu! voru! w 255
ajj an arrow fromi to j 231
BY unitrivalent arrow diagrams 3.5
By n-coloured unitrivalent arrow

diagrams 5.2
B the matrix T(exp( xS) 1) 3.8
d} structure constants of g 3.6
C the invariant of a cap 6.3

CcC the Commutators Commute relation 3.5
CP the Cap-Pull relation 6.1.2 6.2
CW  Cap-Wen relations 6.5.1
c a chord in A" 6.6
der Lie-algebra derivations 5.2
DY, DY arrow diagrams for v/w-tangles 5.1
Dy arrow diagrams for braids 2.3.1
D' D allowing trivalent vertices 3.5
DY(") arrow diagrams long knots 3.2
Da either D or DR 3.5
DL left-going isolated arrow 3.5
Dr right-going isolated arrow 3.5
div the \divergence" 5.2
dk strand deletion 25.1.4
di the direction of a crossing 3.7
E the Euler operator 3.8
E the normalized Euler operator 3.8
F amapAYIA VW 6.2
F the main [AT ] unknown 6.4
Fl Framing Independence 3.3
FR Flip Relations 6.5.1, 6.5.2
Fn the free group 2.2.3
FA, the free associative algebra 2.5.1.5
I a ltered structure 4.3
g a nite-dimensional Lie algebra 3.6
Gn degreem piece 2.3.1
I augmentation ideal 2.3.2 4.2
Ig gog 3.6
IAM  In nitesimal Alexander

Module 3.8, 3.8.2
IAM © |AM , before relations 3.8.2
IHX  arrow-IHX relations 3.5
iy an inclusion Fp, ! wWB 41 2.2.3
J a map TAut, ! exp(tr,) 5.2

a map TAut, ! try 5.2
K usual knots 3.9
KTG Knotted Trivalent Graphs 6.6
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lien free Lie algebra 52 u a maptder, ' P Y("p) 5.2
I a maptder, 'P Y("p) 5.2 Ue strand unzips 6.1.3
M the \mixed" move 3.1 ug strand unzips 2.5.1.6
0] an \algebraic structure" 4.1 uBj the (usual) braid group 2.1.1
oC the Overcrossings Commute relation2.2 uT u-tangles 5.3
PY primitives of B}Y 52 V a nite-type invariant 2.3.1
P (") primitives of A (") 3.2 V,V?* the invariant of a (positive) vertex 6.3
P ("n) primitives of A (") 52 V the invariant of a negative vertex 6.3
PB, the group of pure v-braids 211 11 Vertex Invariance 6.2
PwB, the group of pure w-braids 2.2 VR123 virtual Reidemeister moves 3.1
proj  projectivization 4.2 VvBq the virtual braid group 2.1.1
R the relations in IAM 3.8.2 VT v-tangles 5.1
R Z() 2.4 VvT("n) pure n-component v-tangles 5.2
R the ring Z[X; X 1] 3.8.2 W Z(w) 6.5.3
R1 the augmentation ideal of R 3.8.2 Wp weight system 2.3.1
R the invariant of a crossing 6.3 W? Wen squared 6.5.1
RI Rotation number Independence 3.2 w the map xX 7! wy 3.7
R123 Reidemeister moves 3.1 w the wen 6.5
R4 a Reidemeister move for foams/graphs w; ip ring # i 221
6.1.2 Wi the k-wheel 3.5
R the \spun" R1 move 3.1 wB, the group of w-braids 2.2
sder  special derivations 5.3 wrl w-tangles 5.1
S the circuit algebra of skeletons 4.4 wT (") pure n-component w-tangles 5.2
SAut, the group exp(sder,) 6.6 wWIF  w-tangled foams with wens 6.5
S(K) a matrix of signs 3.7 WTF° orientable w-tangled foams 6.1
Sk complete orientation reversal 55 X an indeterminate 3.7
Se complete orientation reversal 6.1.3 X;,; Xy moduli of horizontal rings 2.2.1
Sh the symmetric group 2.1.1 x; the generators ofF A 2.5.1.5
'STU arrow-STU relations 3.5 (Xj) abasis ofg 3.6
Si a virtual crossing between adjacent Yn; Y, moduli of rings 25.4
strands 211 Z expansions throughout
Si the sign of a crossing 3.7 Za an A-expansion 4.3
KTG signed long KTGs 6.6 Z4 the Kontsevich integral 3.9
sl self-linking 3.1
TV Twisted Vertex relations 6.5.1 4T 4T relations 6.6
tder  tangential derivations 5.2 4T ‘AT relations 2.3.1
trn cyclic words 5.2 6T 6T relations 2.3.1
tro cyclic words mod degree 1 52 semi-virtual crossings 2.3.1
Ty amapAW1IU (lg) 3.6 right action 2.2.3
TAut , the group exp(tder,) 52 " a \long" strand throughout
TC Tails Commute 231 " the quandle operation 4.2
T(K) the \trapping" matrix 3.7 "5 doubled " 4.2
U universal enveloping algebra 3.6 the adjoint on AY("}) 5.2
ucC Undercrossings Commute 2.2
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