FUNDAMENTAL CONCEPTS IN DIFFERENTIAL GEOMETRY FALL 2000 EXERCISES HANDOUT # 9

- 1. Show that S^3 is diffeomorphic with SU(2), so that S^3 is a Lie group. Let $\mathcal{G} = T_e S^3$. Find a presentation of \mathcal{G} as a Lie algebra.
- 2. Show that there is a one to one correspondence between
 - (a) Vector fields on M.
 - (b) Derivations $C^{\infty}(M) \to C^{\infty}(M)$.
- **3.** Let M be a smooth manifold. A flow on M is an action (in the category of smooth manifolds) of the group \mathbb{R} on M.

Show that if M is a compact manifold, then there is a one to one correspondence between flows and vector fields.

4. Let M be a smooth manifold and X,Y be vector fields that in a small trivial open set U are given by

$$X = \sum_{i=1}^{n} f_i \frac{\partial}{\partial x_i}$$
$$Y = \sum_{i=1}^{n} g_i \frac{\partial}{\partial x_i}.$$

- (a) Compute [X,Y] in this local coordinate system.
- (b) Prove the following "geometric" interpretation of [X,Y] as the difference between flowing first along Y and then along X and flowing first along X and then along Y.

Suppose we work in the same trivial neighborhood U of a point p. So $U \equiv \mathbb{R}^n$ and T_uU is identified naturally with \mathbb{R}^n . For a vector field Z define $J_{Z,\epsilon}: U \to U$ by

$$J_{Z,\epsilon} \colon x \mapsto x + \epsilon Z(x)$$
.

Show that

$$[X,Y](p) = \lim_{\epsilon \to 0} \frac{1}{\epsilon^2} [J_{X,\epsilon} J_{Y,\epsilon} - J_{Y,\epsilon} J_{X,\epsilon}](p)$$

Date: 26 Dec., 2000.