Stochastic Processes

Def. A discrete-time stochastic process is a collection of random variables \(X_n, \ n = 0, 1, 2, \ldots \)

\(n \) is the time (or, rather, time step)

Def. A continuous-time stochastic process is a collection of random variables \(X_t, \ t \in (0, +\infty) \)

It is assumed that r.v. \(X_n \) (or \(X_t \)) are taking values in the same space (called “state space”). WLOG, state space will be a subset of \(\mathbb{R} \).

Def. For fixed \(n \) (or \(t \)) r.v. \(X_n \) (\(X_t \), respectively) is called the section of process \(X = X_n \) (\(X = X_t \))

Recall: \(X_t = X_t(w) \), \(w \in \Omega \)

We omit \(w \) from now on.

Def. Fix \(w \in \Omega \). Then \(n \to X_n(w) \) is a sequence of numbers, \(t \to X_t(w) \) is a function.

In both cases, it is called a trajectory of process \(X \)

Ex. (Random walk)

```
Experiment: flip n coin => get $1 if H

flip coin n times, \( X_n = \) how much cash we have

provided that \( X_0 = 0 \)

\( X_n \) "cash process" is an example of a stock process

State space? \( \mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \)
```
Given a stochastic process, one can associate with it a

Random walk on \mathbb{Z}: elementary but fundamental model
(can model dynamics of an electron or a stock price)

P \left[X_{n+1} = m-1 \mid X_n = m \right] = \frac{1}{2}

P \left[X_{n+1} = m+1 \mid X_n = m \right] = \frac{1}{2}

\begin{align*}
X_n \text{ take values in } \mathbb{Z} \\
\text{let's define r.v. } X_n : \\
\text{Formal definition of } X_n \\
\begin{cases}
 \text{if } X_n = m \text{ (dollars)} \\
 \quad X_{n+1} = \begin{cases}
 m-1, \text{ prob. } \frac{1}{2} & (\text{if coin came } T) \\
 m+1, \text{ prob. } \frac{1}{2} & (\text{if coin came } H)
 \end{cases}
\end{cases}
\end{align*}

A compact notation:

A trajectory of X_n (for $n=0,1,2,3$)

"Brownian motion"
Given a stochastic process, one can associate with it a number of random variables:

Ex. (First passage time of a random walk)

\(X_n \) stock price (actually, this is a random walk)

\[
\begin{align*}
\text{What's the probability that } X_n \text{ will hit } b \in \mathbb{Z}, \ b > 0, \\
\text{for } n \leq N. \\
\bar{b} = 2, \ N = 30 \text{ (days)}
\end{align*}
\]

Possible question

\[
\text{Take } b = 2, \quad \bar{b} = 2
\]

\[
\text{Hit the barrier}
\]

\[
\text{Hitting time (first passage time)}
\]

First passage time (the first time in random walk } X_n \text{ is equal to } b = 2 \)

\[
\tau = \min \{ n : X_n = 2 \}
\]

Let's find the distribution of \(\tau \):

\[
\begin{align*}
\text{Distribution of r.v. } \tau \\
\tau = 0 & \quad \mathbb{P}(\tau = 0) = 0 \\
\tau = 1 & \quad \mathbb{P}(\tau = 1) = 0 \\
\tau = 2 & \quad \mathbb{P}(\tau = 2) = \mathbb{P}(\text{win twice in a row}) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \\
\tau = 3 & \quad \mathbb{P}(\tau = 3) = 0 \\
& \vdots
\end{align*}
\]

HW: find \(\mathbb{P}(\tau = 5) \)

Def: A process \(\tilde{X} \) is called a Markov chain if

\[
\mathbb{P}(X_{n+1} = j \mid X_n = i, X_{n-1} = k, \ldots, X_0 = \ell) = \mathbb{P}(X_{n+1} = j \mid X_n = i) =: P_{ij}
\]

In other words, the conditional distribution of \(X_{n+1} \) only depends on \(X_n \) and not on data \(X_{n-1}, \ldots, X_0 \).
given its present state \(X_n \) and past states \(X_{n-1}, X_{n-2}, \ldots, X_0 \) depends only on the present state.

(Informally, \(X_n \) "doesn't have memory")

Ex: Random walk is a Markov chain \(<\) check

HW: Give example of a process that is not a Markov chain.