
Announcements

Topics: Exponentials and logarithms, inverse trig,
extrema, Rolle’s Theorem

Homework: Watch videos 5.7 - 5.12, 6.1 and 6.2.
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Warm-up: Logarithm and Absolute Value

The function F is defined by the equation

F (x) = ln |x |.

What is its derivative?

1 F ′(x) =
1

x

2 F ′(x) =
1

|x |

3 F is not differentiable on its domain
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Warm up

Compute the derivative of the following functions:

1 f (x) = esin x+cos x ln x

2 f (x) = πtan x

3 f (x) = ln [ex + ln ln ln x ]

Reminder: We know:

d

dx
ex = ex

d

dx
ax = ax ln a

d

dx
ln x =

1

x
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Multiple choice

The derivative of xx is:

a. x(xx−1)

b. (ln(x) + 1)xx

b. ln(x)xx
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Logrithmic differentiation

Find dy
dx :

1. y = xx
x
+ 1

2. xy = x2 + y x
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Exercise: Hard derivatives made easier

Calculate the derivative of

h(x) = 3

√(
sin6 x

)√
x7 + 6x + 2

3x (x10 + 2x)10

Hint: Differentiate ln(h(x)) instead.
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A different type of logarithm

Calculate the derivative of

f (x) = logx+1(x2 + 1)

Note: This is a new function. We have not given you a formula for it yet,
That is on purpose.

Hint: If you do not know where to start, remember the definition of
logarithm:

loga b = c ⇐⇒ ac = b.
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The arctan function

Here’s (part of) the graph of the tan function.

Question. Does this function have an inverse?
Problem. Find the largest interval containing 0 such that the restriction
of tan to it is injective.
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The arctan function

We define arctan to be the inverse of the function with this graph:

Qin Deng MAT137 Lecture 9 June 4, 2021 9 / 21



The arctan function

In symbols, that means we define the function arctan as the inverse of the
function

g(x) = tan x , restricted to the interval
(
−π

2
,
π

2

)
.

In other words, if x , y ∈ R, then

arctan(y) = x ⇐⇒

{
??? ∈

(
−π

2 ,
π
2

)
???

Problem 1. What should be where the question marks are?

Problem 2. What are the domain and range of arctan?

Problem 3. Sketch the graph of arctan.
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The arctan function

To remind you:

arctan(y) = x ⇐⇒

{
x ∈

(
−π

2 ,
π
2

)
tan x = y

Compute the following values:

1 arctan (tan (1))

2 arctan (tan (3))

3 arctan
(
tan
(
π
2

))
4 arctan (tan (−6)))

5 tan (arctan (0))

6 tan (arctan (10))
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Derivative of arctan

Compute
d

dx
arctan(x).
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Standard choice of restrictions

We make the following standard choice of restrictions
when we define the inverse trig functions:

1 sin(x) restricted to [−π
2 ,

π
2 ].

2 cos(x) restricted to [0, π].

3 tan(x) restricted to (−π
2 ,

π
2 ).

4 sec(x) restricted to [0, π2 ) ∪ (π2 , π].

5 csc(x) restricted to [−π
2 , 0) ∪ (0, π2 ].

6 cot(x) restricted to (0, π).

Qin Deng MAT137 Lecture 9 June 4, 2021 13 / 21



Developing arctan2

Let’s define arctan2(x) as the inverse of the restriction of
tan(x) to the interval (π2 ,

3π
2 ). Find the following:

1. The domain and the range of arctan2.

2. A graph of arctan2.

3. tan(arctan2(12)), arctan2(tan(0)), arctan2(tan(π)),
arctan2(tan(7))

4. Compute the derivative of arctan2.
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Definition of local extremum

Find local and global extrema of the function with this graph:

Qin Deng MAT137 Lecture 9 June 4, 2021 15 / 21



What can you conclude?

We know the following about the function f .

f has domain R.

f is continuous

f (0) = 0

For every x ∈ R, f (x) ≥ x .

What can you conclude about f ′(0)? Prove it.

Hint: Sketch the graph of f . Looking at the graph, make
a conjecture.
To prove it, imitate the proof of the Local EVT from
Video 5.3.
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Fractional exponents

Let g(x) = x2/3(x − 1)3.

Find local and global extrema of g on [−1, 2].
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Trig extrema

Let f (x) =
sin x

3 + cos x
.

Find the maximum and minimum values of f .
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Zeroes of the derivative

For each of the following conditions, sketch the graph of
some function f that is differentiable on R and such that

1 f has exactly 3 zeroes and f ′ has exactly 2 zeroes.

2 f has exactly 3 zeroes and f ′ has exactly 3 zeroes.

3 f has exactly 3 zeroes and f ′ has exactly 1 zero.

4 f has exactly 3 zeroes and f ′ has infinitely many
zeroes.
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How many zeroes?

Let
f (x) = ex − sin x + x2 + 10x

How many zeroes does f have? Hint: Differentiate. Is it
obvious how many zeroes the derivative has? If not,
differentiate again.
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Zeroes of a polynomial

You probably learned in high school that a polynomial of
degree n has at most n real zeroes. Now you can prove it!
Hint: Use induction.
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