Announcements

- Topics: Implicit differentiation, inverses, exponentials and logarithms

Homework: Watch videos 4.12-4.14, 5.1-5.6

A pesky function

Let $h(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$.
(1) Calculate $h^{\prime}(x)$ for any $x \neq 0$.
(2) Using the definition of derivative, calculate $h^{\prime}(0)$.
(3) Calculate $\lim _{x \rightarrow 0} h^{\prime}(x)$

Hint: Questions 2 and 3 have different answers.
(1) Is h continuous at 0?
(5) Is h differentiable at 0 ?
(0) Is h^{\prime} continuous at 0?

Differentiable functions

Let $a \in \mathbb{R}$.
Let f be a function with domain \mathbb{R}.
Assume f is differentiable everywhere.
What can we conclude?
(1) $f(a)$ is defined.
(2) $\lim _{x \rightarrow a} f(x)$ exists.
(3) f is continuous at a.
(9) $f^{\prime}(a)$ exists.
(5) $\lim _{x \rightarrow a} f^{\prime}(x)$ exists.
(6) f^{\prime} is continuous at a.

Implicit differentiation

The equation

$$
\sin (x+y)+x y^{2}=0
$$

defines a function $y=h(x)$ near $(0,0)$. Using implicit differentiation, compute
($h(0)$
(2) $h^{\prime}(0)$

- $h^{\prime \prime}(0)$
- $h^{\prime \prime \prime}(0)$

Graph

Worm up

A worm is crawling accross the table. The path of the worm looks something like this:

True or False?

The position of the worm is a function.

Worm function

A worm is crawling accross the table.
For any time t, let $f(t)$ be the position of the worm.
This defines a function f.
(1) What is the domain of f ?
(2) What is the codomain of f ?
© What is the range of f ?

Composition and inverses

Assume for simplicity that all functions in this problem have domain \mathbb{R}.

Let f and g be functions. Assume they each have an inverse.

Is $(f \circ g)^{-1}=f^{-1} \circ g^{-1}$?

- If YES, prove it.
- If NO, fix the statement.

If you do not know how to start, experiment with the functions

$$
f(x)=x+1, \quad g(x)=2 x
$$

Composition of one-to-one functions

Assume for simplicity that all functions in this problem have domain \mathbb{R}. Prove the following theorem.

Theorem A

Let f and g be functions.
IF f and g are one-to-one,
THEN $f \circ g$ is one-to-one.

Suggestion:

(1) Write the definition of what you want to prove.
(2) Figure out the formal structure of the proof.

- Complete the proof (use the hypotheses!)

Composition of one-to-one functions - 2

Assume for simplicity that all functions in this problem have domain \mathbb{R}. Prove the following theorem.

Theorem B

Let f and g be functions.
IF $f \circ g$ is one-to-one, THEN g is one-to-one.
Suggestion:
(1) Transform the " $P \Longrightarrow Q$ " theorem into an equivalent "(not $Q) \Longrightarrow($ not $P)$ " theorem.
You will prove that one instead.
(2) Write the definition of the hypotheses and of the conclusion.
(3) Write the proof.

Composition of one-to-one functions - 3

Assume for simplicity that all functions in this problem have domain \mathbb{R}.
Prove the following claim is FALSE.

Claim

Let f and g be functions.
IF $f \circ g$ is one-to-one,
THEN f is one-to-one.

Absolute value and inverses

Let

$$
h(x)=x|x|+1
$$

(Calculate $h^{-1}(-8)$.
(2) Sketch the graph of h.

- Find an equation for h^{-1}.
- Sketch the graph of h^{-1}.
- Verify that
- for every $t \in$???, $\quad h\left(h^{-1}(t)\right)=t$.
- for every $t \in$???, $h^{-1}(h(t))=t$.

Derivatives of the inverse function

Let f be a one-to-one function.
Let $a, b \in \mathbb{R}$ such that $b=f(a)$.
(1) Obtain a formula for $\left(f^{-1}\right)^{\prime}(b)$ in terms of $f^{\prime}(a)$. Hint: This was done in Video 4.4
(2) Obtain a formula for $\left(f^{-1}\right)^{\prime \prime}(b)$ in terms of $f^{\prime}(a)$ and $f^{\prime \prime}(a)$.

- Challenge: Obtain a formula for $\left(f^{-1}\right)^{\prime \prime \prime}(b)$ in terms of $f^{\prime}(a), f^{\prime \prime}(a)$, and $f^{\prime \prime \prime}(a)$.

