Announcements

- Topics: Proof of differentiation rules, chain rule, trig differentiation and implicit differentiation
- Quiz 1 today.
- Homework: Watch videos 4.1-4.11

Intuitive idea of the derivative

Below is the graph of the derivative of some function f. We know f is continuous and $f(0)=0$. Graph f.

Homework: Intuitive idea of the derivative

Below is the graph of the derivative of some function f. We know f is continuous and $f(0)=0$. Graph f.

Derivatives from the definition

Let

$$
g(x)=\frac{2}{\sqrt{x}}
$$

Calculate $g^{\prime}(4)$ directly from the definition of derivative as a limit.

Estimations

Without using a calculator, estimate $\sqrt[20]{1.01}$ as well as you can.

Hint: The tangent line is a good approximation to the function near the point of tangency.

Higher order derivatives

Let $g(x)=\frac{1}{x^{3}}$.
Calculate the first few derivatives.
Make a conjecture for a formula for the n-th derivative $g^{(n)}(x)$. Homework: Prove it by induction.

Homework: Computations

Compute the derivative of the following functions:
-

- $f(x)=\sqrt{x}(1+2 x)$

$$
f(x)=x^{100}+3 x^{30}-2 x^{15}
$$

- $f(x)=\frac{x^{6}+1}{x^{3}}$
- $f(x)=\frac{4}{x^{4}}$
- $f(x)=\frac{x^{2}-2}{x^{2}+2}$

Quotient rule

Let $a \in \mathbb{R}$.

Given functions f and g defined in a neighbourhood of a.
Define $h(x)=\frac{f(x)}{g(x)}$.
Assume f and g are \qquad .

Assume \qquad .

Then \qquad .

Prove this.

True or False - Differentiability and Composition

Let f and g be functions with domain \mathbb{R}. Let $c \in \mathbb{R}$. Assume f and g are differentiable at c. What can we conclude?

- $f \circ g$ is differentiable at c.
- $f \circ f$ is differentiable at c.
- $f \circ \sin$ is differentiable at c.
- sin of is differentiable at c.

Quick composition

Let f and g be differentiable functions and let $h=f \circ g$. What is $h^{\prime}(2)$?

- $f^{\prime}(2) \circ g^{\prime}(2)$
(2) $f^{\prime}(2) g^{\prime}(2)$
- $f^{\prime}(g(2)) g^{\prime}(2)$
- $f^{\prime}(g(x)) g^{\prime}(2)$

Warm up

Differentiate

$$
f(x)=\sqrt{x+\sqrt{x+1}}
$$

A long chain

The function below has 137 square roots:

$$
f(x)=\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x+\ldots+\sqrt{x+\sqrt{x+1}}}}}}
$$

Find the equation of the line tangent to the graph of f at the point with x-coordinate 0 .

Derivative of cos

Let $g(x)=\cos x$.

Obtain and prove a formula for its derivative directly from the definition of derivative as a limit.

Hint: Imitate the derivation in Video 3.12.
You will need a trig identity. Google it if you do not know it.

Homework: Derivatives of the other trig functions

Use the basic differentiation rules, as well as

$$
\frac{d}{d x} \sin x=\cos x, \quad \frac{d}{d x} \cos x=-\sin x
$$

to quickly obtain and prove formulas for the derivatives of tan, cot, sec, and csc.

Homework: Trig derivatives

Compute the derivatives of the following functions:
(1) $f(x)=\tan \left(3 x^{2}+1\right)$
(2) $f(x)=(\cos x)(\sin 2 x)(\tan 3 x)$

- $f(x)=\cos (\sin (\tan x))$
- $f(x)=\cos \left(3 x+\sqrt{1+\sin ^{2} x^{2}}\right)$

A pesky function

Let $h(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$.
(1) Calculate $h^{\prime}(x)$ for any $x \neq 0$.
(2) Using the definition of derivative, calculate $h^{\prime}(0)$.
(3) Calculate $\lim _{x \rightarrow 0} h^{\prime}(x)$

Hint: Questions 2 and 3 have different answers.
(1) Is h continuous at 0?
(5) Is h differentiable at 0 ?
(0) Is h^{\prime} continuous at 0?

Differentiable functions

Let $a \in \mathbb{R}$.
Let f be a function with domain \mathbb{R}.
Assume f is differentiable everywhere.
What can we conclude?
(1) $f(a)$ is defined.
(2) $\lim _{x \rightarrow a} f(x)$ exists.
(3) f is continuous at a.
(9) $f^{\prime}(a)$ exists.
(5) $\lim _{x \rightarrow a} f^{\prime}(x)$ exists.
(6) f^{\prime} is continuous at a.

Implicit differentiation

The equation

$$
\sin (x+y)+x y^{2}=0
$$

defines a function $y=h(x)$ near $(0,0)$. Using implicit differentiation, compute
($h(0)$
(2) $h^{\prime}(0)$

- $h^{\prime \prime}(0)$
- $h^{\prime \prime \prime}(0)$

Graph

Quiz info

(1) Quiz 1 is available on the Quizzes section of the MAT137 Quercus site.
(2) If you have any question or technical issue, contact me privately on the Zoom chat.

- You cannot post anything related to the Quiz anywhere until Saturday, this includes the group chat, Piazza and anywhere else. There may very well be students who are still writing the quiz after you finish, even after noon.
- Commented solutions to the quiz questions will be posted next week and special office hours will be held to discuss the quiz questions.

