Announcements

- Topics: IVT, EVT, Derivatives
- Thematic office hours are available! See office hour schedule for more info.
- Quiz 1 will be on Friday and take 30 minutes. It will cover up to and until video 2.20. You will be able to access it from 11:20am - noon. You must start the quiz before 11:30am to get full time.
- Homework: Watch videos 3.6, 3.7, 3.9-3.13

Trig computations

Using that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, compute the following limits:

- $\lim _{x \rightarrow 2} \frac{\sin x}{x}$
- $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}$
- $\lim _{x \rightarrow 0} \frac{\tan ^{2}\left(2 x^{2}\right)}{x^{4}}$
(9) $\lim _{x \rightarrow 0} \frac{\sin e^{x}}{e^{x}}$
- $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$
- $\lim _{x \rightarrow 0} \frac{\tan ^{10}\left(2 x^{20}\right)}{\sin ^{200}(3 x)}$
(0) $\lim _{x \rightarrow 0}[(\sin x)(\cos (2 x))(\tan (3 x))(\sec (4 x))(\csc (5 x))(\cot (6 x))]$

Limits at infinity

Compute:

- $\lim _{x \rightarrow \infty}\left(x^{7}-2 x^{5}+11\right)$
- $\lim _{x \rightarrow \infty}\left(x^{2}-\sqrt{x^{5}+1}\right)$
- $\lim _{x \rightarrow \infty} \frac{x^{2}+11}{x+1}$
- $\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+3}{3 x^{2}+4 x+5}$
- $\lim _{x \rightarrow \infty} \frac{x^{3}+\sqrt{2 x^{6}+1}}{2 x^{3}+\sqrt{x^{5}+1}}$

Plus or minus infinity?

Compute:

(1) $\lim _{x \rightarrow-3^{+}} \frac{x^{2}-9}{3-2 x-x^{2}}$
(2) $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-9}{3-2 x-x^{2}}$

Is this computation correct?

Compute $L=\lim _{x \rightarrow-\infty}\left[x-\sqrt{x^{2}+x}\right]$.

Solution 1

$$
\begin{aligned}
L & =\lim _{x \rightarrow-\infty} \frac{\left[x-\sqrt{x^{2}+x}\right]\left[x+\sqrt{x^{2}+x}\right]}{\left[x+\sqrt{x^{2}+x}\right]}=\lim _{x \rightarrow-\infty} \frac{x^{2}-\left(x^{2}+x\right)}{\left[x+\sqrt{x^{2}+x}\right]} \\
& =\lim _{x \rightarrow-\infty} \frac{-x}{x\left[1+\sqrt{1+\frac{1}{x}}\right]}=\lim _{x \rightarrow-\infty} \frac{-1}{\left[1+\sqrt{1+\frac{1}{x}}\right]}=\frac{-1}{2}
\end{aligned}
$$

Temperature

Yesterday, the outside temperature in Toronto at 6 AM was 15°. At 6 PM , the temperature was 30°.
(1) Must there have been a time between 6 AM and 6 PM when the temperature was 20° ? Explain how you know. Which assumption about temperature allows you to reach your conclusion?
(2) Must there have been a time between 6 AM and 6 PM when the temperature was 32° ? Explain how you know.

- Could there have been a time between 6 AM and 6 PM when the temperature was 32° ? Explain how you know.

Existence of solutions

Prove that the equation

$$
x^{4}-2 x=100
$$

has at least two solutions.

Definition of maximum

Let f be a function with domain I.
Which one (or ones) of the following is (or are) a definition of " f has a maximum on I "?
(1) $\forall x \in I, \exists C \in \mathbb{R}$ s.t. $f(x) \leq C$
(2) $\exists C \in \mathbb{R}$ s.t. $\forall x \in I, f(x) \leq C$

- $\exists C \in \mathbb{R}$ s.t. $\forall x \in I, f(x)<C$

More on the definition of maximum

Let f be a function with domain I.
What does each of the following mean?

- $\exists C \in \mathbb{R}$ s.t. $\forall x \in I, f(x) \leq C$
(2) $\exists C \in \mathbb{R}$ s.t. $\forall x \in I, f(x)<C$
- $\exists a \in I$ s.t. $\forall x \in I, f(x) \leq f(a)$
- $\exists a \in I$ s.t. $\forall x \in I, f(x)<f(a)$

EVT is best possible?

Recall the statement of EVT.
Find/draw a continuous function f which is continuous on $[0,1)$ which doesn't have a maximum.

Find/draw a continuous function f which is continuous on $[0,1)$ which has neither a maximum nor a minimum.

Extrema

In each of the following cases, does the function f have a maximum and a minimum on the interval I?
(1) $f(x)=x^{2}, \quad l=(-1,1)$.
(2) $f(x)=\frac{\left(e^{x}+2\right) \sin x}{x}-\cos x+3, \quad I=[2,6]$

Tangent line to a line?

What is the equation of the line tangent to the graph of $y=x$ at the point with x-coordinate 7 ?
(1) $y=x+7$
(2) $y=x$

- $y=7$
- $x=7$
- There is no tangent line at that point.
- There is more than one tangent line at that point.

Absolute value and derivatives

Let $h(x)=x|x|$. What is $h^{\prime}(0)$?
(1) It is 0 .
(2) It does not exist because $|x|$ is not differentiable at 0 .

- It does not exist because the right- and left-limits, when computing the derivative, are different.
© It does not exist because it has a corner.

Prove these statements are false with counterexamples

Let C be a curve. Let P be a point in C.

- The line tangent to C at P intersects C at only one point: P.
(2) If a line intersects C only at P, then that line must be the tangent line to C at P.
- The tangent line to C at P intersects C at P and "does not cross" C at P. (This means that, near P, it stays on one side of C.)
- If a line intersects C at P and "does not cross" C at P, then it is the tangent line to C at P.

Intuitive idea of the derivative

Graph the derivative of this function.

Intuitive idea of the derivative

Below is the graph of the derivative of some function f. We know f is continuous and $f(0)=0$. Graph f.

Intuitive idea of the derivative

Below is the graph of the derivative of some function f. We know f is continuous and $f(0)=0$. Graph f.

