- **Topics:** Continuity, behaviour of limits under composition, computations
- Homework: Watch videos 2.21, 2.22, 3.1 3.5, 3.8

For a function f defined on an open interval of a, we say f(x) is cts at a iff

Definition 1 $\lim_{x \to a} f(x) = f(a)$

This is clearly equivalently to

Definition 2

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \implies |f(x) - f(a)| < \epsilon.$$

Slightly less clearly, it is also equivalent to

Definition 3

$$\forall \epsilon > 0, \ \exists \delta > 0 \ \text{s.t.} \ |x - a| < \delta \implies |f(x) - f(a)| < \epsilon.$$

Continuous at a point

f continuous at c means $\lim_{x\to c} f(x) = f(c)$.

Continuous on an open interval

f continuous on the interval (a, b) means $\forall c \in (a, b)$, f is continuous at c.

Continuous on a closed interval

f continuous on the interval [a, b] means

$$\lim_{x\to a^+} f(x) = f(a)$$

2)
$$orall c \in (a,b)$$
, f is continuous at c

$$\lim_{x\to b^-}f(x)=f(b)$$

Undefined function

Let $a \in \mathbb{R}$ and let f be a function. Assume f(a) is undefined.

What can we conclude?

- $\lim_{x\to a} f(x) \text{ exist}$
- $\lim_{x \to a} f(x) \text{ doesn't exist.}$
- No conclusion. $\lim_{x \to a} f(x)$ may or may not exist.

What else can we conclude?

- f is continuous at a.
- Is not continuous at a.
- No conclusion. f may or may not be continuous at a.

Let x, y ∈ ℝ. What does the following expression calculate? Prove it.

$$f(x,y)=\frac{x+y+|x-y|}{2}$$

Suggestion: If you don't know how to start, try some sample values of x and y.

• Write a similar expression to compute $\min\{x, y\}$.

We want to prove the following theorem

Theorem

IF f and g are continuous functions THEN $h(x) = \max\{f(x), g(x)\}\$ is also a continuous function.

You are allowed to use all results that we already know. What is the fastest way to prove this? *Hint:* There is a way to prove this quickly without writing any epsilons.

- IF f and g have removable discontinuities at a THEN f + g has a removable discontinuity at a
- IF f and g have non-removable discontinuities at a THEN f + g has a non-removable discontinuity at a

Consider the Dirichlet function

$$D(x) = egin{cases} 1 & ext{if } x \in \mathbb{Q} \ 0 & ext{if } x \in \mathbb{R} ackslash \mathbb{Q} \end{cases}$$

- 1. Write the definition of $\lim_{x\to 0} D(x) \neq 0.5$.
- 2. Prove it.
- 3. Write the definition of $\lim_{x\to 0} D(x)$ DNE.
- 4. Exercise: Prove 3.

Find examples of a function defined on ${\mathbb R}$ satisfying the following conditions:

- 1. f(x) is continuous on \mathbb{R} .
- 2. g(x) is continuous at every $c \in \mathbb{R} \setminus \{0\}$ and discontinuous at 0.
- 3. h(x) is discontinuous at every $c \in \mathbb{R}$.
- 4. m(x) is continuous at 0 and discontinuous at every $c \in \mathbb{R}$.

Hint: Try adjusting the Dirichlet function.

Claim 1?

(Assuming these limits exist)

$$\lim_{x\to a} g(f(x)) = g\left(\lim_{x\to a} f(x)\right)$$

Claim 2?

IF (A)
$$\lim_{x\to a} f(x) = L$$
, and (B) $\lim_{t\to L} g(t) = M$
THEN (C) $\lim_{x\to a} g(f(x)) = M$

A difficult example

Construct a pair of functions f and g such that

$$\lim_{x \to 0} f(x) = 1$$
$$\lim_{t \to 1} g(t) = 2$$
$$\lim_{x \to 0} g(f(x)) = 42$$

Let f be a function with domain $\mathbb R$ such that

$$\lim_{x\to 0}f(x)=3$$

Prove that

$$\lim_{x\to 0} \left[5f(2x) \right] = 15$$

directly from the definition of limit. Do not use any of the limit laws.

- Write down the formal definition of the statement you want to prove.
- Write down what the structure of the formal proof should be, without filling the details.
- 8 Rough work.
- Write down a complete proof.

Computation warmup

Compute the following

$$\lim_{x\to\infty}x\sin(\frac{1}{x})$$

$$\lim_{x\to\infty}\frac{1}{x}\sin(x)$$

Transforming limits

The only thing we know about the function g is that

$$\lim_{x\to 0}\frac{g(x)}{x^2}=2.$$

Use it to compute the following limits:

$$\lim_{x \to 0} \frac{g(x)}{x}$$

$$\lim_{x \to 0} \frac{g(x)}{x^4}$$

$$\lim_{x\to 0}\frac{g(3x)}{x^2}$$

Using that $\lim_{x\to 0} \frac{\sin x}{x} = 1$, compute the following limits:

• $\lim_{x \to 0} [(\sin x) (\cos(2x)) (\tan(3x)) (\sec(4x)) (\csc(5x)) (\cot(6x))]$

Limits at infinity

Compute:

 $\lim_{x \to \infty} \left(x^7 - 2x^5 + 11 \right)$ $\lim_{x \to \infty} \left(x^2 - \sqrt{x^5 + 1} \right)$ $\lim_{x \to \infty} \frac{x^2 + 11}{x + 1}$

• $\lim_{x \to \infty} \frac{x^2 + 2x + 3}{3x^2 + 4x + 5}$

• $\lim_{x \to \infty} \frac{x^3 + \sqrt{2x^6 + 1}}{2x^3 + \sqrt{x^5 + 1}}$

Plus or minus infinity?

Compute:

•
$$\lim_{x \to -3^+} \frac{x^2 - 9}{3 - 2x - x^2}$$
 • $\lim_{x \to 1^+} \frac{x^2 - 9}{3 - 2x - x^2}$

Is this computation correct?

Compute
$$L = \lim_{x \to -\infty} \left[x - \sqrt{x^2 + x} \right]$$
.
Solution 1

$$L = \lim_{x \to -\infty} \frac{\left[x - \sqrt{x^2 + x}\right] \left[x + \sqrt{x^2 + x}\right]}{\left[x + \sqrt{x^2 + x}\right]} = \lim_{x \to -\infty} \frac{x^2 - (x^2 + x)}{\left[x + \sqrt{x^2 + x}\right]}$$
$$= \lim_{x \to -\infty} \frac{-x}{x \left[1 + \sqrt{1 + \frac{1}{x}}\right]} = \lim_{x \to -\infty} \frac{-1}{\left[1 + \sqrt{1 + \frac{1}{x}}\right]} = \frac{-1}{2}$$