
Announcements

Topics: Formal proofs with limit definition and
limit laws

Homework: Watch videos 2.14 - 2.20.
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Infinite limits

Definition

Let a ∈ R.
Let f be a function defined at least on an interval around
a, except possibly at a.
Write a formal definition for

lim
x→a

f (x) =∞.
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Infinite limits

Which one(s) is the definition of lim
x→a

f (x) =∞ ?

1 ∀M ∈ R, ∃δ > 0 s.t. 0 < |x − a| < δ =⇒ f (x) > M

2 ∀M ∈ Z, ∃δ > 0 s.t. 0 < |x − a| < δ =⇒ f (x) > M

3 ∀M > 0, ∃δ > 0 s.t. 0 < |x − a| < δ =⇒ f (x) > M

4 ∀M > 5, ∃δ > 0 s.t. 0 < |x − a| < δ =⇒ f (x) > M
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Related implications

Let a ∈ R. Let f be a function. Assume we know

0 < |x − a| < 0.1 =⇒ f (x) > 100

1 Which values of M ∈ R satisfy ... ?

0 < |x − a| < 0.1 =⇒ f (x) > M

2 Which values of δ > 0 satisfy ... ?

0 < |x − a| < δ =⇒ f (x) > 100
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Warm-up

Let x ∈ R and S1, S2, S3 and S4 be logic statements.
Suppose you know:

1. If |x − 2| < 4, then S1 (is true).

2. If |x − 2| < 5, then S2 (is true).

What condition do you need to guarantee S1 and S2 are
both true?

Suppose you know:

1. If x > 100, then S3 (is true).

2. If x > 1000, then S4 (is true).

What condition do you need to guarantee S3 and S4 are
both true?
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Warm-up

1. Find a value of δ > 0 s.t.

|x − 2| < δ =⇒ |2x − 4| < 1.

2. Find all values of δ > 0 s.t.

|x − 2| < δ =⇒ |2x − 4| < 1.

3. Find all values of δ > 0 s.t.

|x − 2| < δ =⇒ |2x − 4| < 0.1.

3. Let ε > 0, find all values of δ > 0 s.t.

|x − 2| < δ =⇒ |2x − 4| < ε.
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An ε− δ proof

Goal

Prove
lim
x→2

2x = 4

from the definition.

1. Write down the formal definition of claim. This is the
statement you will need to prove.

2. Write down the structure of the proof without details.

3. Write down the complete proof.
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Is this proof correct?

Claim

lim
x→2

x2 = 4

Proof:

Let ε > 0.
Choose δ = ε

|x+2| .
Let x ∈ R.
Asssume 0 < |x − 2| < δ, then,

|x2 − 4| = |x − 2||x + 2| < ε

|x + 2|
|x + 2| = ε.
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Steps for doing an ε− δ proofs: rough work

Goal

Prove
lim
x→2

x2 = 4

from the definition.

1. Write down the formal definition of claim. What can you control?
What are you trying to control? What is out of your control?

2. Start with the |f (x)− L| part of the defintion. Algebraically manipulate
it to get several terms.

3. Determine which one of the terms you can make arbitrarily small by
constraining |x − a|.

4. Bound all other terms by constants by constraining |x − a|.
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Another ε− δ proof

Goal

Prove

lim
x→4

3

x
=

3

4

from the definition.

1. Write down the formal definition of claim.

2. Start with the |f (x)− L| part of the defintion. Algebraically manipulate
it to get several terms.

3. Determine which one of the terms you can make arbitrarily small by
constraining |x − a|.

4. Bound all other terms by constants by constraining |x − a|.

5. Write down a formal proof.
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True or False?

True or false?

Claim

Let a ∈ R.
Let f and g be functions defined near a.

IF lim
x→a

f (x) exists and lim
x→a

g(x) DNE,

THEN lim
x→a

[f (x) + g(x)]DNE .
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True or False?

True or false?

Claim

Let a ∈ R.
Let f and g be functions defined near a.

IF lim
x→a

f (x) = 0,

THEN lim
x→a

[f (x)g(x)] = 0.
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A new squeeze

This is the Squeeze Theorem, as you know it:

The (classical) Squeeze Theorem

Let a,L ∈ R.
Let f , g , and h be functions defined near a, except possibly at a.

IF • For x close to a but not a, h(x) ≤ g (x) ≤ f (x)

• lim
x→a

f (x) = L and lim
x→a

h(x) = L

THEN • lim
x→a

g (x) = L

Come up with a new version of the theorem about limits being
infinity. (The conclusion should be lim

x→a
g (x) =∞.)

Hint: Draw a picture for the classical Squeeze Theorem. Then draw a
picture for the new theorem.
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A new squeeze

A (new) Squeeze Theorem

Let a ∈ R.
Let g and h be functions defined near a, except possibly at a.

IF • For x close to a but not a, h(x) ≤ g (x)

• lim
x→a

h(x) =∞

THEN • lim
x→a

g (x) =∞

1 Replace the first hypothesis with a more precise mathematical
statement.

2 Write down the definition of what you want to prove.
3 Write down the structure of the formal proof.
4 Rough work
5 Write down a complete, formal proof.
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