- **Topics:** Absolute values, inequalities, definitions of limits
- Homework: Watch videos 2.7 2.13

Properties of inequalities

Let $a, b, c \in \mathbb{R}$. Assume a < b. What can we (always) conclude?

- a + c < b + c
 a c < b c
 ac < bc
- $a^2 < b^2$
- $\bullet \quad \frac{1}{a} < \frac{1}{b}$

Properties of absolute value

Let $a, b \in \mathbb{R}$. What can we (always) conclude?

- |ab| = |a||b|
- **2** |a+b| = |a| + |b|

Let $a \in \mathbb{R}$. Let $\delta > 0$.

What are the following sets? Describe them in terms of intervals.

1.
$$A = \{x \in \mathbb{R} : |x| < \delta\}$$

2. $B = \{x \in \mathbb{R} : |x| > \delta\}$
3. $C = \{x \in \mathbb{R} : |x - a| < \delta\}$
4. $D = \{x \in \mathbb{R} : 0 < |x - a| < \delta\}$

Find **all** positive values of *A*, *B*, and *C* which makes the following implications true.

1.
$$(\forall x \in \mathbb{R},) |x-3| < 1 \implies |2x-6| < A.$$

2. $(\forall x \in \mathbb{R},) |x-3| < B \implies |2x-6| < 1.$
3. $(\forall x \in \mathbb{R},) |x-3| < 1 \implies |x-3.5| < C.$

Limits from a graph

Limits from a graph

Given a real number x, we defined the *floor of* x, denoted by $\lfloor x \rfloor$, as the largest integer smaller than or equal to x. For example:

$$\lfloor \pi
floor = 3, \qquad \lfloor 7
floor = 7, \qquad \lfloor -0.5
floor = -1.$$

Sketch the graph of $y = \lfloor x \rfloor$. Then compute:

More limits from a graph

Definition of a limit

Let $a, L \in \mathbb{R}$ and

f a function defined in an open interval around *a*, except possibly at *a*, we say that $\lim_{x \to a} f(x) = L$ iff $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall x \in \mathbb{R}, 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon.$

Translation

$\text{Translation of } \forall \epsilon > 0, \ \exists \delta > 0 \ \text{s.t.} \ 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon.$

 $\begin{array}{l} \forall \epsilon > 0 \\ \exists \delta > 0 \text{ s.t.} \\ \forall x \in \mathbb{R}, \\ 0 < |x - a| < \delta \implies \\ |f(x) - L| < \epsilon. \end{array}$

"If you give me any distance ϵ ..." "... I can find a distance δ such that..."

 $0 < |x - a| < \delta \implies$ "... if x is within δ of (but not equal to) a..." $|f(x) - L| < \epsilon$. "... then f(x) is within ϵ of L."

Find one value of \$\delta > 0\$ s.t.
0 < |x - 2| < \delta \Rightarrow |f(x) - 2| < 0.5
Find all values of \$\delta > 0\$ s.t.
0 < |x - 2| < \delta \Rightarrow |f(x) - 2| < 0.5

Formal definition of a one-sided limit

Let $a, L \in \mathbb{R}$. Write down the definition of $\lim_{x \to a^+} f(x) = L$.

Exercise: Write down the definition of $\lim_{x\to a^-} f(x) = L$.

Qin Deng

Let $a \in \mathbb{R}$.

Write down the definition of the following statments:

- 1. $\lim_{x\to a} f(x)$ exists.
- 2. $\lim_{x \to a} f(x)$ does not exist.