- Topics: Concavity, asymptotes, graphing
- **Homework:** Watch videos 7.1 7.6 before the start of next semester!

Calculate:

$$\lim_{x \to 2} \frac{x^2 + 2x - 6}{x^2 + 3x - 10}$$

$$\lim_{x \to \infty} x^3 e^{-x}$$

$$\lim_{x \to 0} x \sin \frac{2}{x}$$

$$\lim_{x \to \infty} x \sin \frac{2}{x}$$

$$\lim_{x \to \infty} x \sin \frac{2}{x}$$

$$\lim_{x \to 0} \frac{e^{2x^2} - \cos x}{x \sin x}$$

$$Iim_{x\to\infty} \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

$$im_{x \to 1} \left[(\ln x) \tan \frac{\pi x}{2} \right]$$

Calculate:

$$\lim_{x \to 0} \left[\frac{\csc x}{x} - \frac{\cot x}{x} \right]$$

$$\lim_{x \to \infty} \left[\ln(x+2) - \ln(3x+4) \right]$$

$$\lim_{x \to 1} \left[\frac{2}{x^2 - 1} - \frac{1}{x - 1} \right]$$

$$\lim_{x \to -\infty} \left[\sqrt{x^2 + 3x} - \sqrt{x^2 - 3x} \right]$$

Exponential indeterminate forms

Calculate:

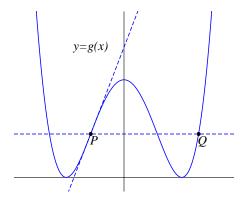
$$\lim_{x \to \infty} \left(\frac{x+2}{x-2} \right)^{3x}$$

$$\lim_{x \to 0} \left[1 + 2\sin(3x) \right]^{4\cot(5x)}$$

- $\lim_{x\to 0^+} x^x$
- $\lim_{x \to \frac{\pi}{2}^{-}} (\tan x)^{\cos x}$ $\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{1/x^2}$

Find the coordinates of P and Q

$$g(x)=x^4-6x^2+9$$



Construct a function f such that

- the domain of f is at least $(0,\infty)$
- f is continuous and concave up on its domain
- $\lim_{x\to\infty} f(x) = -\infty$

Construct a function g such that

- ullet the domain of g is ${\mathbb R}$
- g is continuous
- g has a local minimum x = 0
- g has an inflection point at x = 0

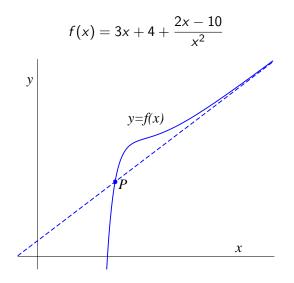
f(x) asymptotic to g(x) as $x \to \infty$

We say f(x) is asymptotic to g(x) as $x \to \infty$ if $\lim_{x \to \infty} [f(x) - g(x)] = 0$

There's a similar definition for f(x) asymptotic to g(x) as $x \to -\infty$.

Often we will be interested in if f(x) is asymptotic to a line L(x).

Find the coordinates of P



Asymptotics

Find the line asymptotes of $f(x) = \sqrt{x^2 + 4x}$ as $x \to \infty$ and $x \to -\infty$.

Hint: Assume $\exists a, b \in \mathbb{R}$ s.t. ax + b is asymptotic to f(x) as $x \to \infty$. Write down what this means and then compute what a and b has to be.

Let f be defined on \mathbb{R} .

We want to see if there are $a, b \in \mathbb{R}$ such that $\lim_{x \to \infty} [f(x) - ax - b] = 0.$

What does *a* have to be? HINT: Suppose $\exists a, b \in \mathbb{R}$ s.t. the limit equation is satisfied, divide by *x* and solve for *a*.

Now we have a formula for a, come up with a way to find b using the previous a.

Theorem

If $\lim_{x\to\infty} \frac{f(x)}{x}$ exists and equal a, and $\lim_{x\to\infty} [f(x) - ax]$ exists and equal b, then f(x) is asymptotic to the line L(x) = ax + b as $x \to \infty$. If any of the two limits DNE, then there are no lines asymptotic to f as $x \to \infty$

Theorem

If $\lim_{x\to-\infty} \frac{f(x)}{x}$ exists and equal *a*, and $\lim_{x\to-\infty} [f(x) - ax]$ exists and equal *b*, then f(x) is asymptotic to the line L(x) = ax + b as $x \to -\infty$. If any of the two limits DNE, then there are no lines asymptotic to *f* as $x \to -\infty$

In the case line asymptotes exist as $x \to \pm \infty$, we have two cases:

When a = 0, we call the line asymptote a horizontal asymptote. In other words,

Horizontal asymptote

We say f has a horizontal asymptote of b_1 as $x \to \infty$ iff $\lim_{x \to \infty} [f(x) - 0x] = b_1 \text{ iff } \lim_{x \to \infty} f(x) = b_1$ We say f has a horizontal asymptote of b_2 as $x \to -\infty$ iff $\lim_{x \to -\infty} [f(x) - 0x] = b_2 \text{ iff } \lim_{x \to -\infty} f(x) = b_2$

When $a \neq 0$, we call the line asymptote a slant asymptote. In particular, as $x \to \infty$ or as $x \to -\infty$, slant and horizontal asymptotes are mutually exclusive.

Let f be a function.

- Write the definition of "f has a vertical asymptte at x = 1".
- Write the definition of "f has a vertical tangent line at x = 1".

- Graph a function g which has a vertical asymptote at x = 1.
- Graph a function h which has a veritcal tangent line at x = 1.

Construct a function H that has all the following properties at once:

- The domain of H is \mathbb{R}
- *H* is strictly increasing on \mathbb{R}
- *H* is differentiable on \mathbb{R}
- H' is periodic with a period of 2
- H' is not constant

The function $G(x) = xe^{1/x}$ is deceiving. To help you out:

$$G'(x) = rac{x-1}{x}e^{1/x}, \qquad G''(x) = rac{e^{1/x}}{x^3}$$

- Carefully study the behaviour as x → ±∞.
 You should find line asymptotes, but it is not easy.
- Orefully study the behaviour as x → 0⁺ and x → 0⁻. The two are very different.
- Use G' to study monotonocity.
- Use G'' to study concavity.
- Sketch the graph of G.