Announcements

- Topics: MVT, related rates
- Homework: Watch videos 6.3-6.12.

How many zeroes?

Let

$$
f(x)=e^{x}-\sin x+x^{2}+10 x
$$

How many zeroes does f have? Hint: Differentiate. Is it obvious how many zeroes the derivative has? If not, differentiate again.

Zeroes of a polynomial

You probably learned in high school that a polynomial of degree n has at most n real zeroes. Now you can prove it! Hint: Use induction.

MVT - True or False?

True or False

Consider $f(x)=|x|$ on the interval $\left[-\frac{1}{2}, 2\right]$. There exists c in $\left(-\frac{1}{2}, 2\right)$ such that

$$
f^{\prime}(c)=\frac{f(2)-f\left(-\frac{1}{2}\right)}{2-\left(-\frac{1}{2}\right)}
$$

Proving difficult identities

Prove that, for every $x \geq 0$,

$$
2 \arctan \sqrt{x}-\arcsin \frac{x-1}{x+1}=\frac{\pi}{2}
$$

Positive derivative implies increasing

Use the MVT to prove

Theorem

Let $a<b$. Let f be a differentiable function on (a, b).

- IF $\forall x \in(a, b), f^{\prime}(x)>0$,
- THEN f is increasing on (a, b).
- Recall the definition of what you are trying to prove.
(2) From that definition, figure out the structure of the proof.
- If you have used a theorem, did you verify the hypotheses?
- Are there words in your proof, or just equations?

What is wrong with this proof?

Theorem

Let $a<b$. Let f be a differentiable function on (a, b).

- IF $\forall x \in(a, b), f^{\prime}(x)>0$,
- THEN f is increasing on (a, b).

Proof.

- From the MVT, $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
- We know $b-a>0$ and $f^{\prime}(c)>0$
- Therefore $f(b)-f(a)>0$. Thus $f(b)>f(a)$.
- f is increasing.

True or False - Monotonicity and local extrema

Let I be an interval. Let f be a function defined on I. Let $c \in I$. Which implications are true?
(1) IF f is increasing on I, THEN $\forall x \in I, f^{\prime}(x)>0$.
(2) IF $\forall x \in I, f^{\prime}(x)>0$, THEN f is increasing on l.
(3) IF f has a local extremum at c, THEN $f^{\prime}(c)=0$.
(9) IF $f^{\prime}(c)=0$, THEN f has a local extremum at c.
(5) IF f has local extremum at c, THEN f has an extremum at c
(0) IF f has an extremum at c, THEN f has local extremum at c

Intervals of monotonicity

$$
\text { Let } g(x)=x^{3}\left(x^{2}-4\right)^{1 / 3}
$$

Find the largest intervals on which this function is increasing or decreasing.

To save time, here is the first derivative:

$$
g^{\prime}(x)=\frac{x^{2}\left(11 x^{2}-36\right)}{3\left(x^{2}-4\right)^{2 / 3}}
$$

Fractional exponents

Let $g(x)=x^{2 / 3}(x-1)^{3}$.

Find local and global extrema of g on $[-1,2]$.

Trig extrema

Let $f(x)=\frac{\sin x}{3+\cos x}$.
Find the maximum and minimum values of f.

Inequalities

Prove that, for every $x \in \mathbb{R}$

$$
e^{x} \geq 1+x
$$

Hint: Where is the function $f(x)=e^{x}-1-x$ increasing or decreasing? What is its minimum?

Related rates

Typical related rates problems: If there is a relationship between quantities and you know how one quantity is changing (usually with respect to time), then how does the other quantity change?

Example: You are filling up a perfectly spherical balloon. You inflate it at a rate of $1000 \mathrm{~cm}^{3} / \mathrm{s}$. At what rate is the radius of the balloon changing when the radius of the balloon is 20 cm ?
The formula for the volume of a sphere is $V=\frac{4 \pi r^{3}}{3}$.

Related rates

A 10-meter long ladder is leaning against a vertical wall and sliding. The top end of the ladder is 8 meters high and sliding down at a rate of 1 meter per second. At what rate is the bottom end sliding away from the wall?

Math party

The MAT137 TAs wanted to rent a disco ball for their upcoming party. However, since they are poor, they could only afford a flashlight. At the party, one TA is designated the "human disco ball". The TA stands in the center of the room pointing the flashlight horizontally and spins at 3 revolutions per second. (Yes, they are that fast. Ask your TA to demonstratel if you don't believe me!) The room is square with side length 8 meters. At which speed is the light from the flashlight moving across the wall when it is 3 meters away from a corner?

