
Announcements

Topics: Inverse functions, one-to-one functions,
inverse trig functions, local extrema

Homework: Watch videos 5.5 - 5.12
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An interesting example

Let f (x) = x2 sin
1

x
.

1 Calculate f ′(x) for any x 6= 0.

2 Using the definition of derivative, calculate f ′(0).

3 Is f continuous at 0?

4 Is f differentiable at 0?

5 Is f ′ continuous at 0?

Qin Deng MAT137 Lecture 9 June 3, 2020 2 / 20



Inverse function from a graph

Calculate:

1 f (2)

2 f (0)

3 f −1(2)

4 f −1(0)

5 f −1(−1)
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Absolute value and inverses

Let
h(x) = x |x |+ 1

1 Calculate h−1(−8).

2 Find an equation for h−1(x).

3 Sketch the graphs of h and h−1.
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Composition and inverses

Assume for simplicity that all functions in this problem
have domain R.

Let f and g be functions. Assume they each have an
inverse.

Is (f ◦ g)−1 = f −1 ◦ g−1?

If YES, prove it.

If NO, fix the statement.

If you do not know how to start, experiment with the
functions

f (x) = x + 1, g(x) = 2x .
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Composition of one-to-one functions – 2

Assume for simplicity that all functions in this problem
have domain R.

Is the following claim TRUE or FALSE? Prove it or give a
counterexample.

Claim

Let f and g be functions.
IF f ◦ g is one-to-one,
THEN g is one-to-one.
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Homework: Composition of one-to-one functions – 3

Assume for simplicity that all functions in this problem
have domain R.

Is the following claim TRUE or FALSE? Prove it or give a
counterexample.

Claim

Let f and g be functions.
IF f ◦ g is one-to-one,
THEN f is one-to-one.
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Derivative of the inverse

Let f be one-to-one.

Let a, b ∈ R s.t. f (a) = b.

Suppose both f and f −1 are twice differentiable.

1. Find a formula for (f −1)′(b) involving f ′(a).

2. Find a formula for (f −1)′′(b) involving f ′(a) and f ′′(a).
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The arctan function

Here’s (part of) the graph of the tan function.

Question. Does this function have an inverse?
Problem. Find the largest interval containing 0 such that the restriction
of tan to it is injective.
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The arctan function

We define arctan to be the inverse of the function with this graph:
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The arctan function

In symbols, that means we define the function arctan as the inverse of the
function

g(x) = tan x , restricted to the interval
(
−π

2
,
π

2

)
.

In other words, if x , y ∈ R, then

arctan(y) = x ⇐⇒

{
??? ∈

(
−π

2 ,
π
2

)
???

Problem 1. What should be where the question marks are?

Problem 2. What are the domain and range of arctan?

Problem 3. Sketch the graph of arctan.
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The arctan function

To remind you:

arctan(y) = x ⇐⇒

{
x ∈

(
−π

2 ,
π
2

)
tan x = y

Compute the following values:

1 arctan (tan (1))

2 arctan (tan (3))

3 arctan
(
tan
(
π
2

))
4 arctan (tan (−6)))

5 tan (arctan (0))

6 tan (arctan (10))
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Standard choice of restrictions

We make the following standard choice of restrictions
when we define the inverse trig functions:

1 sin(x) restricted to [−π
2 ,

π
2 ].

2 cos(x) restricted to [0, π].

3 tan(x) restricted to (−π
2 ,

π
2 ).

4 sec(x) restricted to [0, π2 ) ∪ (π2 , π].

5 csc(x) restricted to [−π
2 , 0) ∪ (0, π2 ].

6 cot(x) restricted to (0, π).
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Developing arctan2

Let’s define arctan2(x) as the inverse of the restriction of
tan(x) to the interval (π2 ,

3π
2 ). Find the following:

1. The domain and the range of arctan2.

2. A graph of arctan2.

3. tan(arctan2(12)), arctan2(tan(0)), arctan2(tan(π)),
arctan2(tan(7))

4. Compute the derivative of arctan2.
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Definition of local extremum

Find local and global extrema of the function with this graph:
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Where is the local extrema?

We know the following about the function h:

The domain of h is (−4, 4).

h is continuous on its domain.

h is differentiable on its domain, except at 0.

h′(x) = 0 ⇐⇒ x = −1 or 1.

What can you conclude about the local extrema of h?
1 h has a local extrema at x = −1, or 1.

2 h has a local extrema at x = −1, 0, or 1.

3 h has a local extrema at x = −4, 1, 0, 1, or 4.

4 None of the above.
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Fractional exponents

Let g(x) = x2/3(x − 1)3.

Find local and global extrema of g on [−1, 2].
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Extrema on a domain of R

Let h(x) = x4 − 4x .

Find local and global extrema of h on R.

Qin Deng MAT137 Lecture 9 June 3, 2020 18 / 20



A sneaky function

Construct a function f satisfying all the following
properties:

Domain f = R
f is continuous

f ′(0) = 0

f does not have a local extremum at 0.

There isn’t an interval centered at 0 on which f is
increasing.

There isn’t an interval centered at 0 on which f is
decreasing.
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What can you conclude?

We know the following about the function f .

f has domain R.

f is continuous

f (0) = 0

For every x ∈ R, f (x) ≥ x .

What can you conclude about f ′(0)? Prove it.

Hint: Sketch the graph of f . Looking at the graph, make
a conjecture.
To prove it, imitate the proof of the Local EVT from
Video 5.3.
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