Announcements

- Topics: Proofs of differentiation rules, Chain rule, trig derivatives, implicit differentiation
- Homework: Watch videos 3.13-3.20, 4.1, 4.2

Product of 3 functions

Given f_{1}, f_{2} and f_{3} differentiable on \mathbb{R}, what can you say $\left(f_{1}(x) f_{2}(x) f_{3}(x)\right)^{\prime}=$?

Higher order derivatives

Let $g(x)=\frac{1}{x^{3}}$.

Calculate the first few derivatives.
Make a conjecture for a formula for the n-th derivative $g^{(n)}(x)$.
Prove it.

Homework: Computations

Compute the derivative of the following functions:
-

- $f(x)=\sqrt{x}(1+2 x)$

$$
f(x)=x^{100}+3 x^{30}-2 x^{15}
$$

- $f(x)=\frac{x^{6}+1}{x^{3}}$
- $f(x)=\frac{4}{x^{4}}$
- $f(x)=\frac{x^{2}-2}{x^{2}+2}$

Warm-up: differentiability implies continuity

Let $a \in \mathbb{R}$.
Let f be defined in a neighbourhood of a.
Write the definitions of " f is continuous at a " and " f is differentiable at a" using limits.

1. Prove if f is differentiable at a then f is continuous a.
2. Show it's not necessarily true that if f is continuous a then f is differentiable a.

A lemma

Let $a \in \mathbb{R}$.
Given a function f defined in a neighbourhood of a.
Assume f is continuous at a and $f(a) \neq 0$.
Prove $\exists \delta>0$ s.t. $\forall x \in(a-\delta, a+\delta), f(x) \neq 0$.

Quotient rule

Let $a \in \mathbb{R}$.

Given functions f and g defined in a neighbourhood of a.
Define $h(x)=\frac{f(x)}{g(x)}$.
Assume f and g are \qquad .

Assume \qquad .

Then \qquad .

Prove this.

Things to check

1. Did you start with the definition of derivative for h at a ?
2. Did you check $h(x)=\frac{f(x)}{g(x)}$ is actually defined in a neighbourhood of a. (Is it necessary to check this?)
3. Did you assume at some point a function is differentiable? If so, did you justify it?
4. Did you assume at some point a function is continuous? If so, did you justify it? (This has to come up in the proof somewhere.)
5. Does the proof work?
6. Can a competent reader understand your proof without asking you for clarification?

Warm-up

Compute the derivative of the following (do not worry too much about the domain):

1. $f(x)=\sqrt{2 x^{2}+x+1}$
2. $g(x)=\sqrt{x+\sqrt{x+\sqrt{x+1}}}$

Two different limits

Let f be differentiable on \mathbb{R}. Compute the following limits in terms of $f^{\prime}(x)$.

- $\lim _{h \rightarrow 0} \frac{f(2 x+h)-f(2 x)}{h}$
(2) $\lim _{h \rightarrow 0} \frac{f(2(x+h))-f(2 x)}{h}$

Higher order derivatives of $f \circ g$

Assume f and g have derivatives of all order.
Find formulas for:

1. $(f \circ g)^{\prime}(x)$
2. $(f \circ g)^{\prime \prime}(x)$
3. $(f \circ g)^{\prime \prime \prime}(x)$
in terms of the values of f, g and their derivatives of any order.

Another "proof" of the quotient rule

Use the product rule, the chain rule and the power rule to prove the quotient rule.

Hint: Start by writing the quotient using products, powers and compositions instead.

Derivative of cos

Compute the derivative of $\cos (x)$ from the definition of derivative as a limit.

Hint: Write down the limit and try to imitate what was done for $\sin (x)$ in the videos. You will need a trig identity.

Homework: Derivative of the other trig functions

Using the differentiation rules and

$$
\frac{d}{d x} \sin (x)=\cos (x), \quad \frac{d}{d x} \cos (x)=-\sin (x) .
$$

Find:

1. $\frac{d}{d x} \tan (x)$
2. $\frac{d}{d x} \cot (x)$
3. $\frac{d}{d x} \sec (x)$
4. $\frac{d}{d x} \csc (x)$

Implicit Differentiation

Function: For each input there is a unique output

Relation: A relationship between several variables with no well-defined idea of an input and an output, in particular no "uniqueness" of output.

Example: $x^{2}+y^{2}=1$ is a relation but not a function.
We can still graph the relation by drawing the curve(s) of all (x, y) satisfying the equation and talk about the "tangent slope" at a given point on the graph.

However, saying something like find $\left.\frac{d y}{d x}\right|_{x=0}$ (usually) doesn't make sense. Why?

Implicit differentiation

The equation

$$
\sin (x+y)+x y^{2}=0
$$

defines a function $y=h(x)$ near $(0,0)$.
Compute:

1. $h(0)$
2. $h^{\prime}(0)=\left.\frac{d y}{d x}\right|_{x=0, y=0}$
3. $h^{\prime \prime}(0)=\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0, y=0}$
4. $h^{\prime \prime \prime}(0)=\left.\frac{d^{3} y}{d x^{3}}\right|_{x=0, y=0}$

Implicit differentiation

1. What is $\left.\frac{d x}{d y}\right|_{x=0, y=0}$? Make a guess from your previous work and check it by implicit differentiation.
2. What is $\left.\frac{d^{2} x}{d y^{2}}\right|_{x=0, y=0}$?
