Announcements

 Topics: IVT, EVT, Definition of derivatives, differentiation rules

• **Homework:** Watch videos 3.6, 3.7, 3.9 -3.12

Qin Deng MAT137 Lecture 5 May 20, 2020 1 / 20

Computations using limit laws

Given a function g s.t.

$$\lim_{x\to 0}\frac{g(x)}{x^2}=2.$$

Use it to compute the following limits (or explain that they don't exist).

- 1. $\lim_{x \to 0} \frac{g(x)}{x}$
- $2. \lim_{x\to 0} \frac{g(x)}{x^4}$
- 3. $\lim_{x \to 0} \frac{g(3x)}{x^2}$

Computations

Compute:

- 1. $\lim_{x\to 2} \frac{|x^2-4|}{x^2-5x+6}$ Hint: Calculate left/right limits to get rid of absolute value sign.
- 2. $\lim_{x\to 4} \frac{x^2-5x+4}{\sqrt{x}-2}$ Hint: Try multiplying and dividing by the conjugate of the denominator.
- 3. $\lim_{x\to\infty}\frac{x^3+\sqrt{2x^6+1}}{2x^3+\sqrt{x^5+1}}$ Hint: Try factoring out the dominant term from the numerator and the denominator.
- 4. $\lim_{x\to -\infty} x \sqrt{x^2+x}$ Hint: You can tell what this goes to by looking at the two limits separately.
- 5. $\lim_{x \to -\infty} x + \sqrt{x^2 + x}$ Hint: Try multiplying and dividing by the conjugate.

Qin Deng MAT137 Lecture 5 May 20, 2020 3 / 20

Definition of maximum

Let f be a function with domain I.

Which one (or ones) of the following is (or are) a definition of

"f has a maximum on I"?

- $\forall x \in I$, $\exists C \in \mathbb{R}$ s.t. $f(x) \leq C$
- $\exists C \in I \text{ s.t. } \forall x \in I, \ f(x) \leq C$
- $\exists C \in \mathbb{R}$ s.t. $\forall x \in I$, f(x) < C

More on the definition of maximum

Let f be a function with domain I.

What does each of the following mean?

- $\exists C \in \mathbb{R}$ s.t. $\forall x \in I$, $f(x) \leq C$
- $\exists a \in I \text{ s.t. } \forall x \in I, f(x) \leq f(a)$
- $\bullet \ \exists a \in I \text{ s.t. } \forall x \in I, \ f(x) < f(a)$

EVT is best possible?

Recall the statement of EVT.

Find/draw a continuous function f which is continuous on [0,1) which doesn't have a maximum.

Find/draw a continuous function f which is continuous on [0,1) which has neither a maximum nor a minimum.

Can this be proven? (Use IVT)

- Prove that at some point in your life your height was exactly 1m.
- Prove that there exists a time of the day when the hour hand and the minute hand of a clock form an angle of exactly 23 degrees.
- Ouring a Raptors basketball game, at half time the Raptors have 51 points. Prove that at some point they had exactly 26 points.

Existence

Prove that the equation

$$x^4 - 2x = 100$$

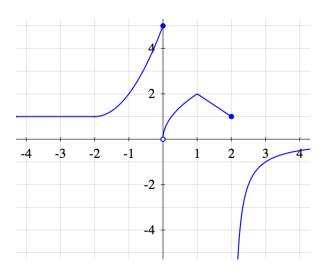
has at least two solutions.

A quick tangent line

What is the equation of the line tangent to the graph of y = x at the point with x-coordinate 7?

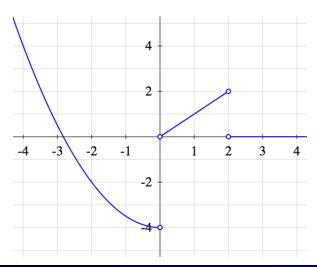
- y = x + 7
- y = x
- **3** y = 7
- x = 7
- There is no tangent line at that point.
- There is more than one tangent line at that point.

Absolute value and tangent lines


- At (0,0) the graph of y = |x|...
 - ... has one tangent line: y=0
 - \bullet ... has one tangent line: x=0
 - \bullet ... has two tangent lines y = x and y = -x
 - ... has no tangent line

Let
$$h(x) = x|x|$$
. What is $h'(0)$?

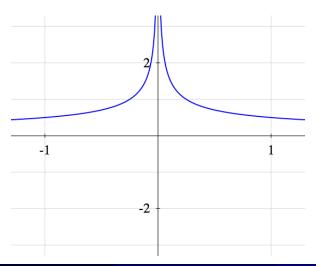
- **●** It is 0
- It does not exist because |x| is not differentiable at 0.
- It does not exist because the right- and left-limits, when computing the derivative, are different.
- It does not exist because it has a corner.


Intuitive idea of the derivative

Graph the derivative of this function.

Intuitive idea of the derivative

Below is the graph of the derivative of some function f. We know f is continuous and f(0) = 0. Graph f.



Qin Deng MAT137 Lecture 5 May 20, 2020

13 / 20

Intuitive idea of the derivative

Below is the graph of the derivative of some function f. We know f is continuous and f(0) = 0. Graph f.

Qin Deng MAT137 Lecture 5 May 20, 2020

Derivatives from the definition

Let

$$g(x) = \frac{2}{\sqrt{x}}$$

Calculate g'(4) directly from the definition of derivative as a limit.

Qin Deng MAT137 Lecture 5 May 20, 2020 15 / 20

Estimations

Without using a calculator, estimate $\sqrt[20]{1.01}$ as well as you can.

Hint: Consider the values you know for $f(x) = \sqrt[20]{x}$ and its derivative.

Estimations

Without using a calculator, estimate $\sqrt[20]{1.01}$ as well as you can.

Hint: Consider the values you know for $f(x) = \sqrt[20]{x}$ and its derivative.

Product of 3 functions

Given f_1 , f_2 and f_3 differentiable on \mathbb{R} , what can you say $(f_1(x)f_2(x)f_3(x))'=?$

Qin Deng MAT137 Lecture 5 May 20, 2020 18 / 20

Higher order derivatives

Let
$$g(x) = \frac{1}{x^3}$$
.

Calculate the first few derivatives.

Make a conjecture for a formula for the *n*-th derivative $g^{(n)}(x)$.

Prove it.

Qin Deng MAT137 Lecture 5 May 20, 2020 19 / 20

Computations

Compute the derivative of the following functions:

$$f(x) = x^{100} + 3x^{30} - 2x^{15}$$

•
$$f(x) = \sqrt[3]{x} + 6$$

3
$$f(x) = \frac{4}{x^4}$$

•
$$f(x) = \sqrt{x}(1+2x)$$

$$f(x) = \frac{x^6 + 1}{x^3}$$

$$f(x) = \frac{x^2 - 2}{x^2 + 2}$$