Announcements

- Topics: Continuity, lots of limit proofs, behaviour of limits under composition
- Homework: Watch videos 2.21, 2.22, 3.1-3.5, 3.8

Another squeeze theorem

Another squeeze theorem

Let $a \in \mathbb{R}$. Let f and g be functions defined near a, except possibly at a.
IF

- $\exists p>0$ s.t. $0<|x-a|<p \Longrightarrow f(x) \geq g(x)$.
- $\lim _{x \rightarrow a} g(x)=\infty$.

THEN

- $\lim _{x \rightarrow a} f(x)=\infty$.

Prove this theorem.
Hint: The proof of this theorem is similar to but easier than the standard squeeze theorem. Write down the relevant $M-\delta$ definitions and try to prove one from the other.

Product limit law

Product limit law

Let $a \in \mathbb{R}$.
Let f and g be functions defined near a, except possibly at a.
IF $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist
THEN $\lim _{x \rightarrow a} f(x) g(x)$ exist and $=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$.
(1) Write down some formal definitions.
(2) Choose L and M to be the limits of f and g at a respectively.

- Since you can control $|x-a|$, what 2 other quantities can you control from your assumption? What are you trying to control?
- Start with what you are trying to control. Algebraically manipulate it to produce an expression contaning the quantities you can control. (Hint: add and subtract by the same quantity inside the absolute value.)

Continuity

For a function f defined on an open interval of a, we say $f(x)$ is cts at a iff

Definition 1

$\lim _{x \rightarrow a} f(x)=f(a)$
This is clearly equivalently to

Definition 2

$\forall \epsilon>0, \exists \delta>0$ s.t. $0<|x-a|<\delta \Longrightarrow|f(x)-f(a)|<\epsilon$.
Slightly less clearly, it is also equivalent to

Definition 3

$\forall \epsilon>0, \exists \delta>0$ s.t. $|x-a|<\delta \Longrightarrow|f(x)-f(a)|<\epsilon$.

Continuity on different sets

Continuous at a point

f continuous at c means $\lim _{x \rightarrow c} f(x)=f(c)$.

Continuous on an open interval

f continuous on the interval (a, b) means $\forall c \in(a, b), f$ is continuous at c.

Continuous on a closed interval

f continuous on the interval $[a, b]$ means
(1) $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
(2) $\forall c \in(a, b), f$ is continuous at c
(3) $\lim _{x \rightarrow b^{-}} f(x)=f(b)$

Dirichlet function

Consider the Dirichlet function

$$
D(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

1. Write the definition of $\lim _{x \rightarrow 0} D(x) \neq 0.5$.
2. Prove it.
3. Write the definition of $\lim _{x \rightarrow 0} D(x)$ DNE.
4. Exercise: Prove 3.

Continuity examples

Find examples of a function defined on \mathbb{R} satisfying the following conditions:

1. $f(x)$ is continuous on \mathbb{R}.
2. $g(x)$ is continuous at every $c \in \mathbb{R} \backslash\{0\}$ and discontinuous at 0 .
3. $h(x)$ is discontinuous at every $c \in \mathbb{R}$.
4. $m(x)$ is continuous at 0 and discontinuous at every $c \in \mathbb{R}$.
Hint: Try adjusting the Dirichlet function.

Behaviour of limits under composition

From examples we've seen before, in general, it is not true that

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right) .
$$

However, the statement does become true if f is continuous (more specifically, at $\lim _{x \rightarrow a} g(x)$).

Theorem: limit "commutes" with continuous functions
IF $\lim _{x \rightarrow a} g(x)$ exists and f is continuous at $\lim _{x \rightarrow a} g(x)$. THEN $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$.

Behaviour of limits under composition

Prove the theorem (assume for simplicity that f and g are defined on \mathbb{R}).

Theorem: limit "commutes" with continuous functions

IF $\lim _{x \rightarrow a} g(x)$ exists and f is continuous at $\lim _{x \rightarrow a} g(x)$.
THEN $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$.

1. For simplicity of writing let L be $\lim _{x \rightarrow a} g(x)$. Write down your two assumptions in $\epsilon-\delta$ form.
2. Write down what you are trying to prove in $\epsilon-\delta$ form.
3. Prove it. Hint: Think about what the two assumptions give you control over. You are going to have to use the δ you get from one of your assumptions as the ϵ in the other assumption.

Behaviour of limits under composition

Fill in the blank and then prove the claim.

Claim

Let $a, L \in \mathbb{R}$.
Let f be a function defined on a punctured neighbourhood of a (i.e. on some open neighbourhood of a, except possibly at a).
If $\lim _{x \rightarrow a} f(x)=L$
Then $\lim _{x \rightarrow \frac{3}{5}} 2 f(5 x)=$
Notice this theorem is not a consequence of the previous theorem becaues f is not assumed to be continuous.

Computations

Suppose $\lim _{x \rightarrow a} f(x)=L$, then $\lim _{x \rightarrow \frac{a}{k}} f(k x)=L$.
Compute:

1. $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}$
2. $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}$

Computations using limit laws

Given a function g s.t.

$$
\lim _{x \rightarrow 0} \frac{g(x)}{x^{2}}=2
$$

Use it to compute the following limits (or explain that they don't exist).

1. $\lim _{x \rightarrow 0} \frac{g(x)}{x}$
2. $\lim _{x \rightarrow 0} \frac{g(x)}{x^{4}}$
3. $\lim _{x \rightarrow 0} \frac{g(3 x)}{x^{2}}$

Homework: Computations

Compute:

1. $\lim _{x \rightarrow 2} \frac{\left|x^{2}-4\right|}{x^{2}-5 x+6}$
2. $\lim _{x \rightarrow 4} \frac{x^{2}-5 x+4}{\sqrt{x}-2}$
3. $\lim _{x \rightarrow \infty} \frac{x^{3}+\sqrt{2 x^{6}+1}}{2 x^{3}+\sqrt{x^{5}+1}}$
4. $\lim _{x \rightarrow-\infty} x-\sqrt{x^{2}+x}$
5. $\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+x}$
