Announcements

- Topics: Absolute values, inequalities, definitions of limits
- Homework: Watch videos 2.7 2.13
- PS 2 has been posted. It's due next week Wednesday.

Properties of inequalities

Given $a, b, c \in \mathbb{R}$.

Assume a < b. What can we (always) conclude?

- a + c < b + c
- **a** -c < b c
- ac < bc
- $a^2 < b^2$

Properties of absolute value

Given $a, b \in \mathbb{R}$. What can we (always) conclude?

•
$$|ab| = |a||b|$$

$$|a + b| = |a| + |b|$$

Qin Deng MAT137 Lecture 3 May 13, 2020 3 / 14

Sets described by distance

Given $a \in \mathbb{R}$. Given $\delta > 0$.

What are the following sets? Describe them in terms of intervals

- 1. $A = \{x \in \mathbb{R} : |x| < \delta\}$
- 2. $B = \{x \in \mathbb{R} : |x| > \delta\}$
- 3. $C = \{x \in \mathbb{R} : |x a| < \delta\}$
- 4. $D = \{x \in \mathbb{R} : 0 < |x a| < \delta\}$

Implications

Find **all** positive values of A, B, and C which makes the following implications true.

- 1. $(\forall x \in \mathbb{R}, |x-3| < 1 \implies |2x-6| < A$.
- 2. $(\forall x \in \mathbb{R}, |x-3| < B \implies |2x-6| < 1.$
- 3. $(\forall x \in \mathbb{R}, |x-3| < 1 \implies |x-3.5| < C$.

Limits from a graph

Do the following limits exist?

- $\lim_{x\to 0} f(f(x))$

Limits from a graph

Find the value of

- $\lim_{x\to 2} \left[f(x)\right]^2$
- $\lim_{x\to -3} f(f(x))$

Floor

Given a real number x, we defined the *floor of* x, denoted by $\lfloor x \rfloor$, as the largest integer smaller than or equal to x. For example:

$$\lfloor \pi \rfloor = 3, \qquad \lfloor 7 \rfloor = 7, \qquad \lfloor -0.5 \rfloor = -1.$$

Sketch the graph of $y = \lfloor x \rfloor$. Then compute:

- $\lim_{x \to 0^+} \lfloor x \rfloor$
- $\lim_{x \to 0^-} \lfloor x \rfloor$

- $\bullet \lim_{x\to 0} \lfloor x \rfloor$
- $\bullet \lim_{x\to 0} \lfloor x^2 \rfloor$

More limits from a graph

Find the value of

$$\lim_{x\to 0^+} g(x)$$

$$\lim_{x\to 0^+} \lfloor g(x) \rfloor$$

$$\lim_{x\to 0^+} g(\lfloor x\rfloor)$$

$$\lim_{x\to 0^-} g(x)$$

$$\bullet \lim_{x\to 0^-} \lfloor \frac{g(x)}{2} \rfloor$$

$$\lim_{x\to 0^-} g(\lfloor x\rfloor)$$

9/14

Formal definition of a limit

Definition of a limit

Given $a, L \in \mathbb{R}$ and

f a function defined in an open interval around a, except possibly at a,

we say that $\lim_{x \to a} f(x) = L$ iff

$$\forall \epsilon > 0, \ \exists \delta > 0 \ \text{s.t.} \ 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon.$$

Qin Deng MAT137 Lecture 3 May 13, 2020 10 / 14

Translation

Translation of
$$\forall \epsilon > 0$$
, $\exists \delta > 0$ s.t. $0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$.

$$\forall \epsilon > 0$$
 "If you give me any distance ϵ ..." $\exists \delta > 0$ s.t. "... I can find a distance δ such that..." $0 < |x - a| < \delta \implies$ "... if x is within δ of (but not equal to) a ..." $|f(x) - L| < \epsilon$. "... then $f(x)$ is within ϵ of L."

Qin Deng MAT137 Lecture 3 May 13, 2020 11/14

Formal definition of a one-sided limit

Given $a, L \in \mathbb{R}$.

Write down the definition of $\lim_{x\to a^+} f(x) = L$.

Exercise: Write down the definition of $\lim_{x\to a^-} f(x) = L$.

Existence of limits

Given $a \in \mathbb{R}$.

Write down the definition of the following statments:

- 1. $\lim_{x\to a} f(x)$ exists.
- 2. $\lim_{x\to a} f(x)$ does not exist.

Given $a, L \in \mathbb{R}$.

Write down the definition of the following statments:

- 1. $\lim_{x\to a} f(x) = \infty$.
- $2. \lim_{x\to\infty} f(x) = L.$

Hint: For 1, you want to replace the two parts with ϵ in the $\epsilon - \delta$ definition for limits. Instead of saying f(x) gets arbitrarily close to L as x gets close to a, you want to say f(x) gets arbitrarily large. How can you do this?