Announcements

- Topics: Absolute values, inequalities, definitions of limits

Homework: Watch videos 2.7-2.13

- PS 2 has been posted. It's due next week Wednesday.

Properties of inequalities

Given $a, b, c \in \mathbb{R}$.
Assume $a<b$. What can we (always) conclude?
(1) $a+c<b+c$
(2) $a-c<b-c$

- $a c<b c$
- $a^{2}<b^{2}$
- $\frac{1}{a}<\frac{1}{b}$

Properties of absolute value

Given $a, b \in \mathbb{R}$. What can we (always) conclude?

- $|a b|=|a||b|$
- $|a+b|=|a|+|b|$

Sets described by distance

Given $a \in \mathbb{R}$. Given $\delta>0$.
What are the following sets? Describe them in terms of intervals.

1. $A=\{x \in \mathbb{R}:|x|<\delta\}$
2. $B=\{x \in \mathbb{R}:|x|>\delta\}$
3. $C=\{x \in \mathbb{R}:|x-a|<\delta\}$
4. $D=\{x \in \mathbb{R}: 0<|x-a|<\delta\}$

Implications

Find all positive values of A, B, and C which makes the following implications true.

1. $(\forall x \in \mathbb{R}),|x-3|<1 \Longrightarrow|2 x-6|<A$.
2. $(\forall x \in \mathbb{R}),|x-3|<B \Longrightarrow|2 x-6|<1$.
3. $(\forall x \in \mathbb{R}),|x-3|<1 \Longrightarrow|x-3.5|<C$.

Limits from a graph

Do the following limits exist?
(1) $\lim _{x \rightarrow 2} f(x)$
(2) $\lim _{x \rightarrow 0} f(f(x))$

Limits from a graph

Find the value of
(1) $\lim _{x \rightarrow 2} f(x)$
(2) $\lim _{x \rightarrow 0} f(f(x))$
(3) $\lim _{x \rightarrow 2}[f(x)]^{2}$
(9) $\lim _{x \rightarrow-3} f(f(x))$

Floor

Given a real number x, we defined the floor of x, denoted by $\lfloor x\rfloor$, as the largest integer smaller than or equal to x. For example:

$$
\lfloor\pi\rfloor=3, \quad\lfloor 7\rfloor=7, \quad\lfloor-0.5\rfloor=-1
$$

Sketch the graph of $y=\lfloor x\rfloor$. Then compute:
(1) $\lim _{x \rightarrow 0^{+}}\lfloor x\rfloor$
(1) $\lim _{x \rightarrow 0}\lfloor x\rfloor$
(2) $\lim _{x \rightarrow 0^{-}}\lfloor x\rfloor$

- $\lim _{x \rightarrow 0}\left\lfloor x^{2}\right\rfloor$

More limits from a graph

Find the value of
(1) $\lim _{x \rightarrow 0^{+}} g(x)$
(2) $\lim _{x \rightarrow 0^{+}}\lfloor g(x)\rfloor$
(3) $\lim _{x \rightarrow 0^{+}} g(\lfloor x\rfloor)$
(9) $\lim _{x \rightarrow 0^{-}} g(x)$
(5) $\lim _{x \rightarrow 0^{-}}\lfloor g(x)\rfloor$
(6) $\lim _{x \rightarrow 0^{-}}\left\lfloor\frac{g(x)}{2}\right\rfloor$
(7) $\lim _{x \rightarrow 0^{-}} g(\lfloor x\rfloor)$

Formal definition of a limit

Definition of a limit

Given $a, L \in \mathbb{R}$ and
f a function defined in an open interval around a, except possibly at a, we say that $\lim _{x \rightarrow a} f(x)=L$ iff
$\forall \epsilon>0, \exists \delta>0$ s.t. $0<|x-a|<\delta \Longrightarrow|f(x)-L|<\epsilon$.

Translation

Translation of $\forall \epsilon>0, \exists \delta>0$ s.t. $0<|x-a|<\delta \Longrightarrow|f(x)-L|<\epsilon$.
$\forall \epsilon>0$
$\exists \delta>0$ s.t.
$0<|x-a|<\delta \Longrightarrow$ $|f(x)-L|<\epsilon$.
"If you give me any distance ϵ..."
"... I can find a distance δ such that..."
"... if x is within δ of (but not equal to) a..."
"... then $f(x)$ is within ϵ of L."

Formal definition of a one-sided limit

Given $a, L \in \mathbb{R}$.
Write down the definition of $\lim _{x \rightarrow a^{+}} f(x)=L$.
Exercise: Write down the definition of $\lim _{x \rightarrow a^{-}} f(x)=L$.

Existence of limits

Given $a \in \mathbb{R}$.
Write down the definition of the following statments:

1. $\lim _{x \rightarrow a} f(x)$ exists.
2. $\lim _{x \rightarrow a} f(x)$ does not exist.

Existence of limits

Given $a, L \in \mathbb{R}$.
Write down the definition of the following statments:

1. $\lim _{x \rightarrow a} f(x)=\infty$.
2. $\lim _{x \rightarrow \infty} f(x)=L$.

Hint: For 1, you want to replace the two parts with ϵ in the $\epsilon-\delta$ definition for limits. Instead of saying $f(x)$ gets arbitrarily close to L as x gets close to a, you want to say $f(x)$ gets arbitrarily large. How can you do this?

