Announcements

- Topics: Local extrema, Rolle's Theorem, MVT, Monotonicity
- Homework: Watch videos 6.1-6.10.

Inverse differentiation review

Differentiate $\arctan (x)$. Simplify your answer so that it doesn't involve any trig or inverse trig functions.

Increasing functions

Given interval \mathbb{I} and f defined on \mathbb{I}.
Give the definition for " f is increasing on \mathbb{I} ".
Theorem
Let $a<b \in \mathbb{R}$.
Let f differentiable on (a, b).
IF $\forall x \in(a, b), f^{\prime}(x)>0$.
THEN f is increasing on (a, b).

What's wrong with this proof?

Theorem

Let $a<b \in \mathbb{R}$.
Let f differentiable on (a, b).
IF $\forall x \in(a, b), f^{\prime}(x)>0$.
THEN f is increasing on (a, b).
Proof: Assume $\forall x \in(a, b), f^{\prime}(x)>0$.
Let $x_{1}, x_{2} \in(a, b)$. Assume $x_{2}>x_{1}$.
Since $f^{\prime}\left(x_{1}\right)>0$, we have $\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}>0$.
Therefore, $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}>0$.
Since $x_{2}-x_{1}>0$, we have $f\left(x_{2}\right)-f\left(x_{1}\right)>0$ (i.e. $f\left(x_{2}\right)>f\left(x_{1}\right)$ as required.)

Prove positive derivative implies increasing

Prove the following theorem.
Theorem
Let $a<b \in \mathbb{R}$.
Let f differentiable on (a, b).
IF $\forall x \in(a, b), f^{\prime}(x)>0$.
THEN f is increasing on (a, b).

True or false?

Theorem
Let $a<b \in \mathbb{R}$.
Let f be differentiable on (a, b).
IF $\forall x \in(a, b), f^{\prime}(x)>0$.
THEN f is increasing on $[a, b]$.
Is there something you can add to the assumptions so that the stated conclusion is true?

Homework: Proof practice

TheoremLet $a<b \in \mathbb{R}$. Let f be differentiable on (a, b).

$$
\text { IF } \forall x \in(a, b), f^{\prime}(x) \neq 0
$$

$$
\text { THEN } f \text { is ??? }
$$

Where is the local extrema?

We know the following about the function h :

- The domain of h is $(-4,4)$.
- h is continuous on its domain.
- h is differentiable on its domain, except at 0 .
- $h^{\prime}(x)=0 \quad \Longleftrightarrow \quad x=-1$ or 1 .

What can you conclude about the local extrema of h ?

(1) h has a local extrema at $x=-1$, and 1 .
(2) h has a local extrema at $x=-1,0$, and 1 .

- h has a local extrema at $x=-4,1,0,1$, and 4 .
- None of the above.

Fractional exponents

Let $g(x)=x^{2 / 3}(x-1)^{3}$.

Find local and global extrema of g on $[0,2]$.

Extrema on a domain of \mathbb{R}

Let $h(x)=x^{4}-4 x$.
Find local and global extrema of h on \mathbb{R}.

What can you conclude?

We know the following about the function f.

- f has domain \mathbb{R}.
- f is continuous
- $f(0)=0$
- For every $x \in \mathbb{R}, f(x) \geq x$.

What can you conclude about $f^{\prime}(0)$? Prove it.
Hint: Sketch the graph of f. Looking at the graph, make a conjecture.
To prove it, imitate the proof of the Local EVT from Video 5.3.

Zeroes of the derivative

If possible, construct a function f that is differentiable on \mathbb{R} and such that

- f has exactly 2 zeroes and f^{\prime} has exactly 1 zero.
- f has exactly 2 zeroes and f^{\prime} has exactly 2 zeroes.
- f has exactly 3 zeroes and f^{\prime} has exactly 1 zero.
- f has exactly 1 zero and f^{\prime} has infinitely many zeroes.

How many zeroes?

Let

$$
f(x)=x^{2}-\cos (x)
$$

How many zeroes does f have?
Let

$$
g(x)=x^{2}+\cos (x)
$$

How many zeroes does g have?
Do this question without using any graphing utilities.
Hint: First put an upperbound on the number of zeroes both f and g has by taking second derivatives. Then analyze the sign of the first derivatives.

Roots of a polynomial

Given $n \in \mathbb{Z}^{+}$.
A polynomial of degree n is a function $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$ where
$\forall i=0, \ldots, n, a_{i} \in \mathbb{R}$ and $a_{n} \neq 0$.
Prove a polynomial of degree n can have at most n distinct roots.

Proving difficult identities

Prove that, for every $x \geq 0$,

$$
\arcsin \frac{1-x}{1+x}+2 \arctan \sqrt{x}=\frac{\pi}{2}
$$

Hint: Take derivatives.

Intervals of monotonicity

Let $g(x)=x^{3}\left(x^{2}-4\right)^{1 / 3}$.

Find out on which intervals this function is increasing or decreasing.
Using that information, sketch its graph.

To save time, here is the first derivative:

$$
g^{\prime}(x)=\frac{x^{2}\left(11 x^{2}-36\right)}{3\left(x^{2}-4\right)^{2 / 3}}
$$

Inequalities

Prove that, for every $x \in \mathbb{R}$

$$
e^{x} \geq 1+x
$$

Hint: When is the function $f(x)=e^{x}-1-x$ increasing or decreasing?

