- **Topics:** Local extrema, Rolle's Theorem, MVT, Monotonicity
- Homework: Watch videos 6.1 6.10.

Differentiate $\arctan(x)$. Simplify your answer so that it doesn't involve any trig or inverse trig functions.

Given interval \mathbb{I} and f defined on \mathbb{I} .

Give the definition for "f is increasing on \mathbb{I} ".

Theorem

Let $a < b \in \mathbb{R}$. Let f differentiable on (a, b). IF $\forall x \in (a, b), f'(x) > 0$. THEN f is increasing on (a, b).

Theorem

Let $a < b \in \mathbb{R}$. Let f differentiable on (a, b). IF $\forall x \in (a, b), f'(x) > 0$. THEN f is increasing on (a, b).

Proof: Assume
$$\forall x \in (a, b), f'(x) > 0$$
.
Let $x_1, x_2 \in (a, b)$. Assume $x_2 > x_1$.
Since $f'(x_1) > 0$, we have $\lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$.
Therefore, $\frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$.
Since $x_2 - x_1 > 0$, we have $f(x_2) - f(x_1) > 0$ (i.e. $f(x_2) > f(x_1)$ as required.)

Prove the following theorem.

Theorem

Let $a < b \in \mathbb{R}$.

Let f differentiable on (a, b).

$$\mathsf{IF} \,\,\forall x \in (a,b), \,\, f'(x) > 0.$$

THEN f is increasing on (a, b).

Theorem

- Let $a < b \in \mathbb{R}$.
- Let f be differentiable on (a, b).
- IF $\forall x \in (a, b)$, f'(x) > 0.

THEN f is increasing on [a, b].

Is there something you can add to the assumptions so that the stated conclusion is true?

Theorem

Let $a < b \in \mathbb{R}$. Let f be differentiable on (a, b). IF $\forall x \in (a, b), f'(x) \neq 0$. THEN f is ???

Where is the local extrema?

We know the following about the function h:

- The domain of h is (-4, 4).
- h is continuous on its domain.
- *h* is differentiable on its domain, except at 0.

•
$$h'(x) = 0 \quad \iff \quad x = -1 \text{ or } 1.$$

What can you conclude about the local extrema of *h*?

- *h* has a local extrema at x = -1, and 1.
- *h* has a local extrema at x = -1, 0, and 1.
- *h* has a local extrema at x = -4, 1, 0, 1, and 4.
- None of the above.

Let
$$g(x) = x^{2/3}(x-1)^3$$
.

Find local and global extrema of g on [0, 2].

Let
$$h(x) = x^4 - 4x$$
.

Find local and global extrema of h on \mathbb{R} .

We know the following about the function f.

- f has domain \mathbb{R} .
- f is continuous
- f(0) = 0
- For every $x \in \mathbb{R}$, $f(x) \ge x$.

What can you conclude about f'(0)? Prove it.

Hint: Sketch the graph of f. Looking at the graph, make a conjecture.

To prove it, imitate the proof of the Local EVT from Video 5.3.

If possible, construct a function f that is differentiable on ${\mathbb R}$ and such that

- f has exactly 2 zeroes and f' has exactly 1 zero.
- f has exactly 2 zeroes and f' has exactly 2 zeroes.
- f has exactly 3 zeroes and f' has exactly 1 zero.
- f has exactly 1 zero and f' has infinitely many zeroes.

Let

$$f(x) = x^2 - \cos(x)$$

How many zeroes does f have?

Let

$$g(x) = x^2 + \cos(x)$$

How many zeroes does g have? Do this question without using any graphing utilities. Hint: First put an upperbound on the number of zeroes both f and g has by taking second derivatives. Then analyze the sign of the first derivatives. Given $n \in \mathbb{Z}^+$.

A polynomial of degree *n* is a function $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0 \text{ where}$ $\forall i = 0, ..., n, a_i \in \mathbb{R} \text{ and } a_n \neq 0.$

Prove a polynomial of degree n can have at most n distinct roots.

Prove that, for every $x \ge 0$,

$$\arcsin \frac{1-x}{1+x} + 2 \arctan \sqrt{x} = \frac{\pi}{2}$$

Hint: Take derivatives.

Let
$$g(x) = x^3(x^2 - 4)^{1/3}$$
.

Find out on which intervals this function is increasing or decreasing.

Using that information, sketch its graph.

To save time, here is the first derivative:

$$g'(x) = \frac{x^2(11x^2 - 36)}{3(x^2 - 4)^{2/3}}$$

Prove that, for every $x \in \mathbb{R}$

$$e^x \ge 1 + x$$

Hint: When is the function $f(x) = e^x - 1 - x$ increasing or decreasing?