MAT 137

Tutorial \#11- Areas

July 10-11, 2019

1. Calculate the area of the region between the curve $y=1+\sin (2 x)$, the x-axis, the y-axis, and $x=\pi / 2$.
2. Find the area of the region bounded by the graph $y=4 x-x^{2}$ and the x-axis.
3. Find the area of the region between the curves $y=5-x^{2}$ and $y=3-x$.
4. Calculate the area of the total region bounded by the curves $2 y+1=0$ and $\cos x+y=0$, from $x=0$ to $x=2 \pi$.
5. Find the total area of the region bounded by the curves $y=x^{3}-2 x+2$ and $y=x^{2}+2$.
6. We want to compute the area of the region between the line $y=x-1$ and the parabola $y^{2}=2 x+6$ We have two methods to calculate this one. For both methods, start by finding the points of interception and sketching the region.
(a) Method 1. Solve for y on the equation $y^{2}=2 x+6$. You will notice that there are two solutions. Look back at the graph. These correspond to the two branches of the parabola when we consider y as a function of x.
Try to decompose your area as the sum of two areas that you can write as integrals. Be careful.
(b) Method 2. Think of y as the variable and of x as a function of y.
7. Calculate the area of the region bounded by the curves $y^{2}+3 y-x=16$ and $|3 y|-x=0$.
8. Consider the collection of all parabolas with equations $y=(\cos a)\left(x^{2}-\sin ^{2} a\right)$ where a is an arbitrary constant. Find the parabola such that the region between itself and the x-axis has the largest possible area.
