Tutorial \#10- Antiderivatives
July 8-9, 2019
Do not confuse:

- $\int_{a}^{b} f(x) d x$ is a number and represents area.
- $\int f(x) d x$ represents the collection of all functions whose derivative is $f(x)$.

You have probably not seen this before today's tutorial. That is on purpose. We want you to realize that you already know how to compute a lot of antiderivatives without learning any new formulas. Your TA will guide you.

1. Let's warm up with some easier antiderivatives.

$$
\begin{array}{llll}
\int x^{3} d x & \int \sqrt{x} d x & \int \frac{1}{x^{3}} d x & \int\left(x^{3}-2 x^{2}+7 x-5\right) d x \\
\int \sin x d x & \int \cos x d x & \int e^{x} d x & \int \sec ^{2} x d x
\end{array}
$$

2. The poor integral $\int \frac{1}{x} d x$ is often misunderstood. Let's get to know her a bit better.
(a) Calculate the domain and the derivative of $F_{1}(x)=\ln x$.
(b) Calculate the domain and the derivative of $F_{2}(x)=\ln (-x)$.
(c) Calculate the domain and the derivative of $F_{3}(x)=\ln |x|$.
(d) In view of the above, what is $\int \frac{1}{x} d x$?
(e) Calculate the derivative of $F_{4}(x)=\ln (2 x)$. Do we have a problem?
3. Next, try some harder antiderivatives. Remember: the key is often to make an educated guess, try it, and then take it from there.

$$
\begin{array}{lll}
\int(3 x+7)^{10} d x & \int 3 \sin (2 x) d x & \int 5 e^{-2 x} d x \\
\int \frac{2}{(7-6 x)^{4}} d x & \int \frac{x^{3}+2 x^{2}}{x} d x & \int \sqrt{x}(x+1) d x \\
\int \frac{2}{3 x-1} d x & \int \frac{1}{\sqrt[3]{5-2 x}} d x & \int \tan ^{2} x d x
\end{array}
$$

Hint: For the last one, think of the trig identity involving tangents and secants.

MAT 137

Tutorial \#10- Antiderivatives
 July 8-9, 2019

Harder question

4. These antiderivatives are more difficult. We will learn later a more systematic way to approach them, but it is a very good exercise to try to figure them out now without knowing any tricks or formulas, just by (sophisticated) guess and check. You will solidify your understanding in the process.

$$
\begin{array}{lll}
\int x\left(3 x^{2}+1\right)^{100} d x & \int \frac{\cos \sqrt{x}}{\sqrt{x}} d x & \int x e^{-x^{2}} d x \\
\int \frac{(\ln x)^{3}}{x} d x & \int \frac{\sin \ln x}{x} d x & \int \frac{1}{x \ln x} d x
\end{array}
$$

Hint: For the first one, study the derivative of a function of the form $F(x)=\left(3 x^{2}+1\right)^{n}$ for some appropriate value of n.
For the second one, what is the derivative of $F(x)=\sin \sqrt{x}$?

