MAT 137Y: Calculus! Problem Set D

1. Use Taylor series to compute the following limits

(a)
$$\lim_{x \to 0} \frac{6\sin x - 6x + x^3}{x^5}$$
 (b) $\lim_{x \to 0} \frac{e^{x^2} - \cos(2x) - 3x^2}{x^2\sin(x^2)}$

- 2. Consider the function $F(x) = \int_0^x e^{-t^4} dt$. It is impossible to find an "elementary antiderivative" for the function $f(t) = e^{-t^4}$, so we use series instead to understand this function.
 - (a) Obtain the Taylor series of $f(t) = e^{-t^4}$ around t = 0.
 - (b) Use the previous answer to represent the function $F(x) = \int_0^x e^{-t^4} dt$ as a power series.
 - (c) Estimate $\int_0^1 e^{-t^4} dt$ with an error smaller than 0.001. *Hint:* Notice the series is alternating.
- 3. Consider the function $f(x) = \frac{1}{\sqrt{1+x}}$.
 - (a) Find a formula for $f^{(n)}(x)$ and prove it. Suggestion: Compute a few terms, guess the pattern, then prove it by induction.
 - (b) Write down an explicit formula for the Maclaurin series of f(x). Let us call this series S(x).
 - (c) Calculate the radius of convergence of S(x). *Note:* It is possible to prove that f(x) = S(x) inside the interval of convergence, but it requires other versions of the Remainder Theorem. For now, just accept this without proof.
 - (d) Use your answer to the previous questions to obtain the Maclaurin series for $g(x) = \arcsin x$ around a = 0. In which domain can you be certain that arcsin is equal to its Maclaurin series?

Hint: What is g'(x)? First write the Maclaurin series for g'(x) and then integrate.

- (e) Give a formula for $g^{(n)}(0)$. *Hint:* You do not need to take any derivatives now. This should be a quick question.
- 4. Use Taylor series to estimate the following quantities with an error smaller than 0.001.

(a)
$$1/e$$
 (b) $\sin 0.3$ (c) $\ln 1.1$

- 5. Give an example of a power series...
 - (a) whose interval of convergence is (-42, 42).
 - (b) whose interval of convergence is [-5, -3].
 - (c) whose interval of convergence is $[e, \pi)$.
 - (d) whose interval of convergence is [-1, 1] and which is *conditionally* convergent both at -1 and at 1.
 - (e) centered at $x = -\sqrt{2}$ and whose interval of convergence is $(-\infty, \infty)$.
- 6. Calculate the radius of convergence, and the interval of convergence, of the following power series:

(a)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2} x^n$$

(b) $\sum_{n=1}^{\infty} \frac{3^n (n-1)}{n^3} (x-2)^n$
(c) $\sum_{n=0}^{\infty} \frac{(2n)!}{n!} x^n$
(d) $\sum_{n=1}^{\infty} \frac{n!}{n^n} (x+1)^n$

7. Given a power series $\sum_{n=1}^{\infty} a_n (x-1)^n$ with interval of convergence (0,2]. Find the interval of convergence for the following series. Justify your answer.

(a)
$$\sum_{n=1}^{\infty} 2a_n(x-2)^n$$

(b) $\sum_{n=1}^{\infty} (-2)^n (a_n)(x-2)^n$