MAT 137Y: Calculus! Problem Set 6 Solution.

- 1. In the following two parts we will define $F(x) = \int_{0}^{x} f(t)dt$. Notice since f is continuous on \mathbb{R} , F'(x) = f(x) by FTC 1.
 - (a) Suppose $\lim_{A\to\infty} \int_{0}^{A} f(t)dt$ is finite and equals $C \in \mathbb{R}$. Choose G(x) = F(x) - C - 1. Notice G is an antiderivative of f(x). We claim $\nexists a \in \mathbb{R}$ s.t. $G(x) = \int_{a}^{x} f(t)dt$.

Suppose otherwise, then let *a* be a number s.t. $G(x) = \int_{a}^{x} f(t)dt$.

We have
$$\int_{0}^{x} f(t)dt - C - 1 = \int_{a}^{x} f(t)dt$$
.
 $\therefore C + 1 = \int_{0}^{x} f(t)dt - \int_{a}^{x} f(t)dt = \int_{0}^{a} f(t)dt = F(a)$

On the other hand, F is non-decreasing since $f(x) \ge 0$ and $\lim_{x\to\infty} F(x) = C$ by assumption. This is a contradiction and therefore $\nexists a \in \mathbb{R}$ s.t. $G(x) = \int_{a}^{x} f(t) dt$.

In the case that $\lim_{A\to-\infty} \int_{A}^{0} f(t)dt$ is finite and equals C we can choose G(x) = F(x) + C + 1 and argue similarly.

(b) Note the assumptions are equivalent to saying $\lim_{x\to\infty} F(x) = \infty$ and $\lim_{x\to-\infty} F(x) = -\infty$. Given G(x) antiderivative of f(x). We divide into three cases. Case 1: G(0) = 0

If G(0) = 0 then $G(x) = \int_{0}^{x} f(t)dt$ since both are equal to 0 at x = 0 and have the same derivative.

Case 2: G(0) > 0

Since $\lim_{x\to-\infty} F(x) = -\infty$, by definition $\exists M \in \mathbb{R}$ s.t. F(M) < -G(0). Note M is necessarily negative since F is non-decreasing and F(0) = 0.

Since F(x) is differentiable it is also continuous on \mathbb{R} .

Moreover F(M) < -G(0) < F(0) = 0. So by IVT on [M, 0], we can choose $a \in [M, 0]$ s.t. F(a) = -G(0).

We claim
$$G(x) = \int_a^x f(t) dt$$
.

This is because $\int_a^0 f(t)dt = -F(a) = G(0)$. So the two functions agree in value at x = 0 and have the same derivative, and are therefore the same functions.

Case 3:
$$G(0) < 0$$

A similar argument to case 2 would work.

2. Define $G(x) = \int_0^x f(t)dt$. Since f(x) is continuous on \mathbb{R} , by FTC 1 G'(x) = f(x). Notice the assumptions in the problem simply says G(1) = 1 and G'(1) = 2.

We prove by induction that $\forall n \in \mathbb{N}$, $F_n(1) = 1$ and $F'_n(1) = 2^{n+1} - 1$. We only need to prove the second part, but the first part will be used in the induction proof of the second part.

Base Case:
$$F_1(1) = 1$$
 and $F'_1(1) = 3$.
 $F_1(1) = \int_0^1 (1)f(t)dt = 1$ by assumption.
 $F_1(x) = x \int_0^x f(t)dt = xG(x)$.
 $\therefore F'_1(1) = G(1) + (1)G'(1)$
 $= 1 + 2$
 $= 3$.

 $\underbrace{\text{Inductive step:}}_{2^{n+2}-1."} \text{We show } \forall n \in \mathbb{N}, \text{``}F_n(1) = 1 \text{ and } F'_n(1) = 2^{n+1} - 1" \implies \text{``}F_{n+1}(1) = 1 \text{ and } F'_{n+1}(1) = 1 \text{ and } F'_{n$

We have

$$F_{n+1}(x) = \int_{0}^{F_n(x)} xf(t)dt$$
$$= x \int_{0}^{F_n(x)} f(t)dt$$
$$= xG(F_n(x)).$$

 $\therefore F_{n+1}(1) = (1)G(F_n(1)) = G(1) = 1.$

Differentiating, using chain rule and product rule, we have

$$F'_{n+1}(1) = G(F_n(1)) + (1)G'(F_n(1))F'_n(1)$$

= 1 + G'(1)(2)
= 1 + (2ⁿ⁺¹ - 1)(2)
= 2ⁿ⁺² - 1.

By induction, we conclude that $\forall n \in \mathbb{N}, F'_n(1) = 2^{n+1} - 1.$