MAT 137Y: Calculus!
 Problem Set 6 Solution.

1. In the following two parts we will define $F(x)=\int_{0}^{x} f(t) d t$. Notice since f is continuous on $\mathbb{R}, \mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x})$ by FTC 1 .
(a) Suppose $\lim _{A \rightarrow \infty} \int_{0}^{A} f(t) d t$ is finite and equals $C \in \mathbb{R}$.

Choose $G(x)=F(x)-C-1$. Notice G is an antiderivative of $f(x)$.
We claim $\nexists a \in \mathbb{R}$ s.t. $G(x)=\int_{a}^{x} f(t) d t$.
Suppose otherwise, then let a be a number s.t. $G(x)=\int_{a}^{x} f(t) d t$.
We have $\int_{0}^{x} f(t) d t-C-1=\int_{a}^{x} f(t) d t$.
$\therefore C+1=\int_{0}^{x} f(t) d t-\int_{a}^{x} f(t) d t=\int_{0}^{a} f(t) d t=F(a)$.
On the otherhand, F is non-decreasing since $f(x) \geq 0$ and $\lim _{x \rightarrow \infty} F(x)=C$ by assumption. This is a contradiction and therefore $\nexists a \in \mathbb{R}$ s.t. $G(x)=\int_{a}^{x} f(t) d t$.
In the case that $\lim _{A \rightarrow-\infty} \int_{A}^{0} f(t) d t$ is finite and equals C we can choose $G(x)=F(x)+C+1$ and argue similarly.
(b) Note the assumptions are equivalent to saying $\lim _{x \rightarrow \infty} F(x)=\infty$ and $\lim _{x \rightarrow-\infty} F(x)=-\infty$.

Given $G(x)$ antiderivative of $f(x)$. We divide into three cases.
Case 1: $G(0)=0$
If $\mathrm{G}(0)=0$ then $G(x)=\int_{0}^{x} f(t) d t$ since both are equal to 0 at $x=0$ and have the same derivative.
Case 2: $G(0)>0$
Since $\lim _{x \rightarrow-\infty} F(x)=-\infty$, by definition $\exists M \in \mathbb{R}$ s.t. $F(M)<-G(0)$. Note M is necessarily negative since F is non-decreasing and $F(0)=0$.
Since $F(x)$ is differentiable it is also continuous on \mathbb{R}.
Moreover $F(M)<-G(0)<F(0)=0$. So by IVT on [M,0], we can choose $a \in[M, 0]$ s.t. $F(a)=-G(0)$.
We claim $G(x)=\int_{a}^{x} f(t) d t$.
This is because $\int_{a}^{0} f(t) d t=-F(a)=G(0)$. So the two functions agree in value at $x=0$ and have the same derivative, and are therefore the same functions.
Case 3: $G(0)<0$
A similar argument to case 2 would work.
2. Define $G(x)=\int_{0}^{x} f(t) d t$. Since $f(x)$ is continuous on \mathbb{R}, by FTC $1 G^{\prime}(x)=f(x)$. Notice the assumptions in the problem simply says $G(1)=1$ and $G^{\prime}(1)=2$.
We prove by induction that $\forall n \in \mathbb{N}, F_{n}(1)=1$ and $F_{n}^{\prime}(1)=2^{n+1}-1$. We only need to prove the second part, but the first part will be used in the induction proof of the second part.

Base Case: $F_{1}(1)=1$ and $F_{1}^{\prime}(1)=3$.
$F_{1}(1)=\int_{0}^{1}(1) f(t) d t=1$ by assumption.
$F_{1}(x)=x \int_{0}^{x} f(t) d t=x G(x)$.

$$
\begin{aligned}
\therefore F_{1}^{\prime}(1) & =G(1)+(1) G^{\prime}(1) \\
& =1+2 \\
& =3 .
\end{aligned}
$$

Inductive step: We show $\forall n \in \mathbb{N}$, " $F_{n}(1)=1$ and $F_{n}^{\prime}(1)=2^{n+1}-1 " \Longrightarrow " F_{n+1}(1)=1$ and $F_{n+1}^{\prime}(1)=$ $2^{n+2}-1$."
We have

$$
\begin{aligned}
F_{n+1}(x) & =\int_{0}^{F_{n}(x)} x f(t) d t \\
& =x \int_{0}^{F_{n}(x)} f(t) d t \\
& =x G\left(F_{n}(x)\right) .
\end{aligned}
$$

$\therefore F_{n+1}(1)=(1) G\left(F_{n}(1)\right)=G(1)=1$.
Differentiating, using chain rule and product rule, we have

$$
\begin{aligned}
F_{n+1}^{\prime}(1) & =G\left(F_{n}(1)\right)+(1) G^{\prime}\left(F_{n}(1)\right) F_{n}^{\prime}(1) \\
& =1+G^{\prime}(1)(2) \\
& =1+\left(2^{n+1}-1\right)(2) \\
& =2^{n+2}-1 .
\end{aligned}
$$

By induction, we conclude that $\forall n \in \mathbb{N}, F_{n}^{\prime}(1)=2^{n+1}-1$.

