
MAT 137Y: Calculus!
Problem Set 5 Solutions
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(e) Taking appropriate limits via either L’Hopital’s Rule or factoring out terms of highest power, we obtain

lim
n!1

S?
Pn

(f) = (b� a)(a3 � a) + (3a2�1)(b�a)2

2 + a(b� a)3 + (b�a)4
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2. (a) Let P = {x0 = 0, x1, ... xn = 1} be a partition of [0, 1].

Let i be an integer between 1 and n.

By definition mi = inf
x2[xi�1,xi]

g(x).

Notice 8x 2 [xi�1, xi] ✓ [0, 1], x3 � x � �1. Therefore, 8x 2 [xi�1, xi], g(x) � �1 and so �1 is a lower

bound of {g(x)|x 2 [xi�1, xi]}.

Moreover, since Q is dense in [0, 1]. There is a rational number in [xi�1, xi] and so �1 2 {g(x)|x 2 [xi�1, xi]}.

Therefore, �1 is the least upperbound of {g(x)|x 2 [xi�1, xi]}. In otherwords, mi = �1.

Therefore,

L(g, P ) =
nX

i=1

mi�xi

=
nX

i=1

(�1)(xi � xi�1)

= �
nX

i=1

(xi � xi�1)

= �1 by telescoping.

By definition, I10 (g) = inf {L(g, P )|P is a partition of [0, 1]}.

Since for any partition P of [0, 1], L(g, P ) = �1 from the above computation, we conclude I10 (g) = �1.

(b) Let f(x) = x3 � x on [0,1].

Let P = {x0 = 0, x1, ... xn = 1} be a partition of [0, 1].

Let i be an integer between 1 and n.

By definition Mi = sup
x2[xi�1,xi]

g(x).

Let M 0
i = sup

x2[xi�1,xi]
f(x).



We claim M 0
i = Mi.

Since f is continuous, there exists x0 2 [xi�1, xi] s.t. f(x0) = M 0
i . Since the irrationals are dense in R, there

are irrational numbers arbitrarily close to x0. By continuity of f again, it should be clear that M 0
i = Mi.

Therefore, U(f, P ) = U(g, P ) and so I10 (f) = I10 (g).

Since f is integrable, we know I10 (f) =
R 1
0 f(x)dx = � 1

4 from the formula in Q1.

Therefore, I10 (g) = � 1
4 .

(c) g is not integrable on [0, 1] since I10 (g) 6= I10 (g).

3. Proof: FIrst let us bound UP (f)� LP (f) for a specific class of partitions of [a, b] (see hint). Let n 2 N.
Let Pn =

�
a, a+ b�a

n , a+ 2 b�a
n , ..., b

 
.

Let i be an integer between 1 and n.
Let mi = inf

x2[xi�1,xi]
f(x) and Mi = sup

x2[xi�1,xi]
f(x).

Since f is C-pink, it is continuous (see proof on last page, we did not take off marks if you did not have this
proof). Therefore by EVT, 9ui, vi 2 [xi�1, xi] s.t. f(ui) = mi and f(vi) = Mi.
Using the fact that f is C-pink, we have Mi �mi = |f(vi)� f(ui)|  C|vi � ui|  C|xi � xi�1| = C b�a

n .
Therefore,
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We will now prove f is integrable on [a, b] using the ✏-reformulation definition.
Given ✏ > 0.
Choose N 2 N s.t. N > C(b�a)2

✏ . Consider PN as above.
Then

UPn(f)� LPn(f)  C
(b� a)2

N

 C
(b� a)2

c(b�a)2

✏

= ✏.

Since we can do this for any ✏ > 0. We conclude that f is integrable on [a, b].

4. (a) Proof: Let M1 = sup
x2[a,b]

f(x) and M2 = sup
x2[a,b]

g(x).

Let x 2 [a, b].
We know M1 � f(x) and M2 � g(x).
Therefore, M1 +M2 � f(x) + g(x).
Since this is true 8x 2 [a, b], M1 +M2 is an upperbound to {f(x) + g(x)|x 2 [a, b]}.
Since sup is the least upperbound, we conclude M1 +M2 � sup

x2[a,b]
f(x) + g(x).

(b) Proof: For any partition P = {x0, x1, ..., xn} of [a, b]. We have:



UP (f + g) =
nX

i=1

Mf+g,i�xi


nX

i=1

(Mf,i +Mg,i)�xi by Q4(a) and �xi > 0

= UP (f) + UP (g),

where Mf+g,i,Mf,i, and Mg,i are Mi as defined above for the function in the index.

By definition, for any ✏ > 0, there are partitions P and Q s.t. UP (f) � I
b
a(f) <

✏
2 and UQ(g) � I

B
a (g) <

✏
2 .

So we have:

I
b
a(f + g)  UP[Q(f + g)

 UP[Q(f) + UP[Q(g)

 UP (f) + UQ(g)

 I
b
a(f)�
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2
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b
a + I

b
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Since this is true for every ✏ > 0, we conclude I
b
a(f+g)  I

b
a+I

b
a(g). Similarly, we have mf+g,i � mf,i+mg,i.

Using the same arguments as above with lower integrals we can conclude Iba(f) + Iba(g)  Iba(f + g).

Putting all this together, we have

Iba(f) + Iba(g)  Iba(f + g)  I
b
a(f + g)  I

b
a(f) + I

b
a(g).

⇤

To conclude, since f and g are integrable on [a, b], we have Iba(f) + Iba(g) = I
b
a(f) + I

b
a(g). Therefore, all

inequalities in
⇤

are equalities, and we have Iba(f + g) = I
b
a(f + g).



Let C > 0.
Claim: f is C-pink on [a, b] =) f is continuous on[a, b].
Proof: Assume f is C-pink.
Let d 2 [a, b].
Given ✏ > 0.
Choose � = ✏

C .
Assume x 2 [a, b] and |x� d| < �.
Then |f(x)� f(d)|  C|x� d| < C� = ✏ since f is C-pink.


