MAT 137Y: Calculus! Practice problems for Playlist 7

Our textbook introduces the definition of integral in a very advanced way. You can read about it in Sections 5.1-5.4, but it is beyond the scope of this course, and perhaps more appropriate for MAT157. The practice problems from those sections, while interesting, may be a bit too much.

Instead of using those practice problems, we have created this problem list as practice problems for Playlist 7

1. Compute these sums
(a) $\sum_{i=2}^{4} i^{j}$
(b) $\sum_{j=2}^{4} i^{j}$
(c) $\sum_{k=2}^{4} i^{j}$
(d) $\sum_{n=0}^{100} \sin \left(\frac{\pi n}{2}\right)$
2. For each positive integer N, let us define $H_{N}=\sum_{i=1}^{N} \frac{1}{i}$. This is a new sequence of terms (called the harmonic sums), that appears often in mathematics, just like N !, for example. Write each of the following sums in terms of harmonic sums:
(a) $\sum_{i=10}^{20} \frac{1}{i}$
(c) $1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots+\frac{1}{99}$
(b) $\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\ldots+\frac{1}{100}$
(d) $\sum_{i=1}^{100} \frac{(-1)^{i+1}}{i}$
3. Calculate the supremum, infimum, maximum, and minimum (if they exist) of the following sets:
(a) $\left\{x \in \mathbb{R} \mid x^{2} \leq 2\right\}$
(b) $\left\{x \in \mathbb{Q} \mid x^{2} \leq 2\right\}$
(c) $\left\{x \in \mathbb{Z} \mid x^{2} \leq 2\right\}$
4. Consider the function f defined by $f(x)=\tan x$. If possible, construct an interval I contained in the domain of f such that...
(a) $\ldots f$ has a maximum and a minimum on I.
(b) $\ldots f$ has a supremum but not a maximum on I.
(c) $\ldots f$ has no supremum and no infimum on I.
(d) $\ldots f$ has an infimum but not a supremum on I.
(e) $\ldots f$ has a minimum, but not an infimum on I.
5. Consider the function f defined by $f(x)=x$.
(a) Find a partition P of $[0,1]$ such that $L_{P}(f)=0.24$.
(b) Let $c \in[0,0.5)$. Find a partition P of $[0,1]$ such that $L_{P}(f)=c$.
(c) Prove that for every partition P of $[0,1], L_{P}(f)+U_{P}(f)=1$.
6. Let $a<b$. Let f be a bounded function on $[a, b]$. Given a partition P of $[a, b]$, let us call $\ell_{P}(f)$ the Riemann sum for f and P when we choose the left end-point for each subinterval.
(a) Find a simple property f must satisfy to guarantee that $L_{P}(f)=\ell_{P}(f)$.
(b) Find a simple property f must satisfy to guarantee that $U_{P}(f)=\ell_{P}(f)$.
7. Is it possible to have a function f bounded on $[0,1]$ and two partitions P and Q of $[0,1]$ such that $P \subseteq Q, L_{P}(f)=L_{Q}(f)$, and $U_{Q}(f) \neq U_{P}(f)$? Either give an example, or prove it is impossible.
8. Let $a<b$. Let f be a bounded function on $[a . b]$. Prove that the following two statements are equivalent:
(a) f is integrable on $[a, b]$.
(b) There exists a UNIQUE number I such that for every partition P of $[a, b]$, $L_{P}(f) \leq I \leq U_{P}(f)$.
