Today's topics and news

- Topic: LCT, Series
- Homework for Wednesday: Watch videos 13.10 13.17.
- Homework for Friday: Watch videos 13.18, 13.19, and 14.1-14.4

Using LCT

Does the following improper integral converge or diverge?

$$
\int_{1}^{\infty} \frac{1}{\sqrt{x-1}(x+2)} d x
$$

Convergent or divergent?

- $\int_{1}^{\infty} \frac{x^{3}+2 x+7}{x^{5}+11 x^{4}+1} d x$ • $\int_{0}^{1} \frac{\sin x}{x^{3 / 2}} d x$
($\int_{1}^{\infty} \frac{1}{\sqrt{x^{2}+x+1}} d x$
- $\int_{0}^{\infty} e^{-x^{2}} d x$
- $\int_{0}^{1} \frac{3 \cos x}{x+\sqrt{x}} d x$
- $\int_{2}^{\infty} \frac{(\ln x)^{10}}{x^{2}} d x$
- $\int_{0}^{1} \cot x d x$
- $\int_{0}^{1} \frac{\arcsin x}{x^{3 / 2}} d x$

Hint: For some these, $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ is useful.

What is wrong with this calculation? Fix it

Claim:

$$
\sum_{n=2}^{\infty} \ln \frac{n}{n+1}=\ln 2
$$

"Justification"

$$
\begin{aligned}
\sum_{n=2}^{\infty} \ln \frac{n}{n+1} & =\sum_{n=2}^{\infty}[\ln n-\ln (n+1)] \\
& =\sum_{n=2}^{\infty} \ln (n)-\sum_{n=2}^{\infty} \ln (n+1) \\
& =(\ln 2+\ln 3+\ln 4+\ldots)-(\ln 3+\ln 4+\ldots) \\
& =\ln 2
\end{aligned}
$$

Trig series: convergent or divergent?

Hint: Compute the first few partial sums.

A telescopic series

I want to calculate the value of the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+2 n}$.
(1) Find a formula for the k-th partial sum $S_{k}=\sum_{n=1}^{k} \frac{1}{n^{2}+2 n}$. Hint: Write $\frac{1}{n^{2}+2 n}=\frac{A}{n}+\frac{B}{n+2}$
(2) Using the definition of series, compute the value of

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+2 n}
$$

Challenge: Compute $S=\sum_{n=2}^{\infty} \frac{3-5 n}{n^{3}-n}$.

Geometric series

Calculate the value of the following series:
(1) $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\ldots$
(2) $\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\ldots$
(3) $\frac{3}{2}-\frac{9}{4}+\frac{27}{8}-\frac{81}{16}+\ldots$
(9) $1+\frac{1}{2^{0.5}}+\frac{1}{2}+\frac{1}{2^{1.5}}+\frac{1}{2^{2}}+\frac{1}{2^{2.5}}+\ldots$
(5) $\sum_{n=1}^{\infty}(-1)^{n} \frac{3^{n}}{2^{2 n+1}}$
(6) $\sum_{n=k}^{\infty} x^{n}$

True or False - Series

Let $\sum_{n=0}^{\infty} a_{n}$ be a series. Let $\left\{S_{n}\right\}_{n=0}^{\infty}$ be its partial-sum sequence.
(1) IF the series $\sum_{n=0}^{\infty} a_{n}$ is divergent, THEN $\exists n \in \mathbb{N}$ such that $a_{n}>100$
(2) IF the series $\sum_{n=0}^{\infty} a_{n}$ is divergent, THEN $\exists n \in \mathbb{N}$ such that $S_{n}>100$
(3) IF the series $\sum_{n=0}^{\infty} a_{n}$ converges

THEN the series $\sum_{n=100}^{\infty} a_{n}$ converges to a smaller number.
(9) IF the series $\sum_{n=0}^{\infty} a_{n}$ converges

THEN the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is eventually monotonic.

True or False - Series

Let $\sum_{n=0}^{\infty} a_{n}$ be a series. Let $\left\{S_{n}\right\}_{n=0}^{\infty}$ be its partial-sum sequence.
(5) IF the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is bounded and eventually monotonic,

THEN the series $\sum_{n=0}^{\infty} a_{n}$ is convergent.
(6) IF the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is increasing, THEN $\forall n \geq 0, a_{n}>0$.
(1) IF $\lim _{n \rightarrow \infty} a_{n}=0$, THEN the series $\sum_{n=0}^{\infty} a_{n}$ is convergent.
(8) IF the series $\sum_{n=0}^{\infty} a_{n}$ is convergent, THEN $\lim _{n \rightarrow \infty} a_{n}=0$.

True or False - The Necessary Condition

- IF $\lim _{n \rightarrow \infty} a_{n}=0$, THEN $\sum_{n}^{\infty} a_{n}$ is convergent.
- IF $\lim _{n \rightarrow \infty} a_{n} \neq 0$, THEN $\sum_{n}^{\infty} a_{n}$ is divergent.
- IF $\sum_{n}^{\infty} a_{n}$ is convergent THEN $\lim _{n \rightarrow \infty} a_{n}=0$.
- IF $\sum_{n}^{\infty} a_{n}$ is divergent THEN $\lim _{n \rightarrow \infty} a_{n} \neq 0$.

True or False - Series

Let $\sum_{n=0}^{\infty} a_{n}$ be a series. Let $\left\{S_{n}\right\}_{n=0}^{\infty}$ be its partial-sum sequence.
(5) IF $\lim _{n \rightarrow \infty} S_{2 n}$ exists, THEN $\sum_{n=0}^{\infty} a_{n}$ is convergent.
(6) IF $\lim _{n \rightarrow \infty} S_{2 n}$ exists and $\lim _{n \rightarrow \infty} a_{n}=0$, THEN $\sum_{n=0}^{\infty} a_{n}$ is convergent.
(3) IF $\sum_{n=0}^{\infty} a_{n}$ is convergent, THEN $\lim _{k \rightarrow \infty}\left[\sum_{n=k}^{\infty} a_{n}\right]=0$.
(8) IF $\sum_{n=0}^{\infty} a_{2 n}$ is convergent and $\sum_{n=0}^{\infty} a_{2 n+1}$ is convergent,

THEN $\sum_{n=0}^{\infty} a_{n}$ is convergent.

Problem

Suppose $\sum_{n=0}^{\infty} a_{n}$ converges and $\forall n \in \mathbb{N}, a_{n} \neq 0$, what can
you say about $\sum_{n=0}^{\infty} \frac{1}{a_{n}}$?

