- Topic: LCT, Series
- Homework for Wednesday: Watch videos 13.10 13.17.
- Homework for Friday: Watch videos 13.18, 13.19, and 14.1 14.4

Does the following improper integral converge or diverge?

$$\int_{1}^{\infty} \frac{1}{\sqrt{x-1}(x+2)} dx$$

Convergent or divergent?

Qin Deng

What is wrong with this calculation? Fix it

Claim:

$$\sum_{n=2}^{\infty} \ln \frac{n}{n+1} = \ln 2$$

"Justification"

$$\sum_{n=2}^{\infty} \ln \frac{n}{n+1} = \sum_{n=2}^{\infty} [\ln n - \ln(n+1)]$$

=
$$\sum_{n=2}^{\infty} \ln(n) - \sum_{n=2}^{\infty} \ln(n+1)$$

=
$$(\ln 2 + \ln 3 + \ln 4 + \dots) - (\ln 3 + \ln 4 + \dots)$$

=
$$\ln 2$$

Hint: Compute the first few partial sums.

A telescopic series

I want to calculate the value of the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$.

• Find a formula for the *k*-th partial sum $S_k = \sum_{n=1}^k \frac{1}{n^2 + 2n}$. *Hint:* Write $\frac{1}{n^2 + 2n} = \frac{A}{n} + \frac{B}{n+2}$

Output the definition of series, compute the value of

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$$

Challenge: Compute
$$S = \sum_{n=2}^{\infty} \frac{3-5n}{n^3-n}$$
.

Calculate the value of the following series:

•
$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots$$

• $\frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \frac{1}{32} - \dots$
• $\frac{3}{2} - \frac{9}{4} + \frac{27}{8} - \frac{81}{16} + \dots$
• $1 + \frac{1}{2^{0.5}} + \frac{1}{2} + \frac{1}{2^{1.5}} + \frac{1}{2^2} + \frac{1}{2^{2.5}} + \dots$
• $\sum_{n=1}^{\infty} (-1)^n \frac{3^n}{2^{2n+1}}$
• $\sum_{n=k}^{\infty} x^n$

True or False – Series

Let
$$\sum_{n=0}^{\infty} a_n$$
 be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence.
• IF the series $\sum_{n=0}^{\infty} a_n$ is divergent, THEN $\exists n \in \mathbb{N}$ such that $a_n > 100$
• IF the series $\sum_{n=0}^{\infty} a_n$ is divergent, THEN $\exists n \in \mathbb{N}$ such that $S_n > 100$
• IF the series $\sum_{n=0}^{\infty} a_n$ converges
THEN the series $\sum_{n=100}^{\infty} a_n$ converges to a smaller number.
• IF the series $\sum_{n=0}^{\infty} a_n$ converges
THEN the series $\sum_{n=0}^{\infty} a_n$ converges
TH

True or False – Series

- Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence.
 - So IF the sequence $\{S_n\}_{n=0}^{\infty}$ is bounded and eventually monotonic, THEN the series $\sum_{n=0}^{\infty} a_n$ is convergent.
 - IF the sequence $\{S_n\}_{n=0}^{\infty}$ is increasing, THEN $\forall n \ge 0, a_n > 0$.

• IF
$$\lim_{n\to\infty} a_n = 0$$
, THEN the series $\sum_{n=0}^{\infty} a_n$ is convergent.

3 IF the series
$$\sum_{n=0}^{\infty} a_n$$
 is convergent, THEN $\lim_{n\to\infty} a_n = 0$.

True or False – The Necessary Condition

• IF
$$\lim_{n \to \infty} a_n = 0$$
, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.
• IF $\lim_{n \to \infty} a_n \neq 0$, THEN $\sum_{n=1}^{\infty} a_n$ is divergent.
• IF $\sum_{n=1}^{\infty} a_n$ is convergent THEN $\lim_{n \to \infty} a_n = 0$.
• IF $\sum_{n=1}^{\infty} a_n$ is divergent THEN $\lim_{n \to \infty} a_n \neq 0$.

True or False – Series

Suppose $\sum_{n=0}^{\infty} a_n$ converges and $\forall n \in \mathbb{N}, a_n \neq 0$, what can you say about $\sum_{n=0}^{\infty} \frac{1}{a_n}$?