## Today's topics and news

- Topic: Improper integrals
- Homework for Friday: Watch videos 13.1-13.9.


## Recall the definitions

(1) Let $f$ be a bounded, continuous function on $[c, \infty)$. How do we define the improper integral

$$
\int_{c}^{\infty} f(x) d x ?
$$

(2) Let $f$ be a continuous function on $(a, b]$. How do we define the improper integral

$$
\int_{a}^{b} f(x) d x ?
$$

## Computation

Calculate, using the definition of improper integral

$$
\int_{1}^{\infty} \frac{1}{x^{2}+x} d x
$$

## The most important improper integrals

Use the definition of improper integral to determine for which values of $p \in \mathbb{R}$ each of the following improper integrals converges.
(1) $\int_{0}^{1} \frac{1}{x^{p}} d x$
(2) $\int_{1}^{\infty} \frac{1}{x^{p}} d x$

- $\int_{0}^{\infty} \frac{1}{x^{p}} d x$


## Warm-up

Is there a difference between:

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow \infty \\
\text { and }}} x-\lim _{x \rightarrow \infty} x \\
&
\end{aligned}
$$

$\lim _{x \rightarrow \infty}(x-x) ?$

## A "simple" integral

What is $\int_{-1}^{1} \frac{1}{x} d x$ ?

- $\int_{-1}^{1} \frac{1}{x} d x=\left.(\ln |x|)\right|_{-1} ^{1}=\ln |1|-\ln |-1|=0$
- $\int_{-1}^{1} \frac{1}{x} d x=0$ because $f(x)=\frac{1}{x}$ is an odd function.
- $\int_{-1}^{1} \frac{1}{x} d x$ is divergent.


## Computation

Does $\int_{0}^{\infty} \frac{1}{x^{2}-3 x+2}$ converge or diverge? Check with a computation.

## A simple BCT application

We want to determine whether $\int_{1}^{\infty} \frac{1}{x+e^{x}} d x$ is convergent or divergent.

We can try at least two comparisons:

- Compare $\frac{1}{x}$ and $\frac{1}{x+e^{x}}$.
- Compare $\frac{1}{e^{x}}$ and $\frac{1}{x+e^{x}}$.

Try both. What can you conclude from each one of them?

## True or False

Let $a \in \mathbb{R}$.
Let $f$ and $g$ be continuous functions on $[a, \infty)$.
Assume that $\forall x \geq a, \quad 0 \leq f(x) \leq g(x)$.
What can we conclude?
(1) IF $\int_{a}^{\infty} f(x) d x$ is convergent, THEN $\int_{a}^{\infty} g(x) d x$ is convergent.
(2) IF $\int_{a}^{\infty} f(x) d x=\infty, \operatorname{THEN} \int_{a}^{\infty} g(x) d x=\infty$.
(3) IF $\int_{a}^{\infty} g(x) d x$ is convergent, THEN $\int_{a}^{\infty} f(x) d x$ is convergent.
(9) IF $\int_{a}^{\infty} g(x) d x=\infty$, THEN $\int_{a}^{\infty} f(x) d x=\infty$.

## True or False - Part II

Let $a \in \mathbb{R}$.
Let $f$ and $g$ be continuous functions on $[a, \infty)$.
Assume that $\forall x \geq a, \quad f(x) \leq g(x)$.
What can we conclude?
(1) IF $\int_{a}^{\infty} f(x) d x$ is convergent, THEN $\int_{a}^{\infty} g(x) d x$ is convergent.
(2) IF $\int_{a}^{\infty} f(x) d x=\infty, \operatorname{THEN} \int_{a}^{\infty} g(x) d x=\infty$.
(3) IF $\int_{a}^{\infty} g(x) d x$ is convergent, THEN $\int_{a}^{\infty} f(x) d x$ is convergent.
(9) IF $\int_{a}^{\infty} g(x) d x=\infty$, THEN $\int_{a}^{\infty} f(x) d x=\infty$.

## True or False - Part III

Let $a \in \mathbb{R}$.
Let $f$ and $g$ be continuous functions on $[a, \infty)$.
Assume that $\exists M \geq a$ s.t. $\forall x \geq M, \quad 0 \geq f(x) \geq g(x)$.
What can we conclude?
(1) IF $\int_{a}^{\infty} f(x) d x$ is convergent, THEN $\int_{a}^{\infty} g(x) d x$ is convergent.
(2) IF $\int_{a}^{\infty} f(x) d x=-\infty$, THEN $\int_{a}^{\infty} g(x) d x=-\infty$.
(3) IF $\int_{a}^{\infty} g(x) d x$ is convergent, THEN $\int_{a}^{\infty} f(x) d x$ is convergent.
(9) IF $\int_{a}^{\infty} g(x) d x=-\infty$, THEN $\int_{a}^{\infty} f(x) d x=-\infty$.

## BCT calculations

Use the BCT to determine whether each of the following is convergent or divergent

- $\int_{1}^{\infty} \frac{1+\cos ^{2} x}{x^{2 / 3}} d x$
- $\int_{0}^{\infty} e^{-x^{2}} d x$
(2) $\int_{1}^{\infty} \frac{1+\cos ^{2} x}{x^{4 / 3}} d x$
- $\int_{2}^{\infty} \frac{(\ln x)^{10}}{x^{2}} d x$
- $\int_{0}^{\infty} \frac{\arctan x^{2}}{1+e^{x}} d x$
- $\int_{2}^{\infty} \frac{x^{2}+1}{x^{4}-2} d x$


## What can you conclude?

Let $a \in \mathbb{R}$. Let $f$ be a continuous, positive function on $[a, \infty)$.
In each of the following cases, what can you conclude about $\int_{a}^{\infty} f(x) d x$ ? Is it convergent, divergent, or we do not know?
(1) $\forall b \geq a, \exists M \in \mathbb{R}$ s.t. $\int_{a}^{b} f(x) d x \leq M$.
(2) $\exists M \in \mathbb{R}$ s.t. $\forall b \geq a, \quad \int_{a}^{b} f(x) d x \leq M$.
(3) $\exists M>0$ s.t. $\forall x \geq a, f(x) \leq M$.
(9) $\exists M>0$ s.t. $\quad \forall x \geq a, f(x) \geq M$.

## A generalization of LCT

This is the theorem you have learned:

## Theorem (Limit-Comparison Test)

Let $a \in \mathbb{R}$. Let $f$ and $g$ be positive, continuous functions on $[a, \infty)$.

- IF the limit $L=\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$ exists and $L>0$.
- THEN $\int_{a}^{\infty} f(x) d x$ and $\int_{a}^{\infty} g(x) d x$ are both convergent or both divergent.

What if we change the hypothesis to $L=0$ ?
(1) Write down the new version of this theorem (different conclusion).
(2) Prove it.

Hint: If $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$, what is larger? $f(x)$ or $g(x)$ ?

## Comparison tests for type 2 improper integrals

In the videos, you learned BCT and LCT for type-1 improper integrals.

- Write the statement of the (standard and eventual) BCT for type-2 improper integrals.
(2) Write the statement of the LCT for type-2 improper integrals.
- Construct an example that you can prove is convergent thanks to one of these theorems.
- Construct an example that you can prove is divergent thanks to one of these theorems.


## Convergent or divergent?

$\begin{array}{ll}\text { (1) } \int_{1}^{\infty} \frac{x^{3}+2 x+7}{x^{5}+11 x^{4}+1} d x & \text { • } \int_{0}^{1} \frac{\sin x}{x^{3 / 2}} d x \\ \text { ( } \int_{1}^{\infty} \frac{1}{\sqrt{x^{2}+x+1}} d x & \text { • } \int_{0}^{\infty} e^{-x^{2}} d x\end{array}$

- $\int_{0}^{1} \frac{3 \cos x}{x+\sqrt{x}} d x$
- $\int_{2}^{\infty} \frac{(\ln x)^{10}}{x^{2}} d x$
- $\int_{0}^{1} \cot x d x$
(- $\int_{0}^{1} \frac{\arcsin x}{x^{3 / 2}} d x$

