
Today’s topics and news

Topic: Sequences, MCT, Big Theorem

Homework for Wednesday: Watch videos 12.1 -
12.10.

Homework for Friday: Watch videos 13.1 - 13.9.
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Definition of limit of a sequence

Let {an}∞n=0 be a sequence. Let L ∈ R.
Which statements are equivalent to “ {an}∞n=0 −→ L”?

1 ∀ε > 0, ∃n0 ∈ N s.t. ∀n ∈ N, n ≥ n0 =⇒ |L− an| < ε.

2 ∀ε > 0, ∃n0 ∈ N s.t. ∀n ∈ N, n > n0 =⇒ |L− an| < ε.

3 ∀ε > 0, ∃n0 ∈ R s.t. ∀n ∈ N, n ≥ n0 =⇒ |L− an| < ε.

4 ∀ε > 0, ∃n0 ∈ N s.t. ∀n ∈ R, n ≥ n0 =⇒ |L− an| < ε.

5 ∀ε > 0, ∃n0 ∈ N s.t. ∀n ∈ N, n ≥ n0 =⇒ |L− an| ≤ ε.

6 ∀ε ∈ (0, 1), ∃n0 ∈ N s.t. ∀n ∈ N, n ≥ n0 =⇒ |L− an| < ε.

7 ∀ε > 0, ∃n0 ∈ N s.t. ∀n ∈ N, n ≥ n0 =⇒ |L− an| <
1

ε
.

8 ∀k ∈ Z+ > 0, ∃n0 ∈ N s.t. ∀n ∈ N, n ≥ n0 =⇒ |L− an| < k .

9 ∀k ∈ Z+ > 0, ∃n0 ∈ N s.t. ∀n ∈ N, n ≥ n0 =⇒ |L− an| <
1

k
.
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Definition of limit of a sequence (continued)

Let {an}∞n=0 be a sequence. Let L ∈ R.
Which statements are equivalent to “ {an}∞n=0 −→ L”?

8 ∀ε > 0, the interval (L− ε, L + ε) contains all the elements of the
sequence, except the first few.

9 ∀ε > 0, the interval (L− ε, L + ε) contains all the elements of the
sequence, except finitely many.

10 ∀ε > 0, the interval (L− ε, L + ε) contains cofinitely many of the
terms of the sequence.

11 ∀ε > 0, the interval [L− ε, L + ε] contains cofinitely many of the
terms of the sequence.

12 Every interval that contains L must contain cofinitely many of the
terms of the sequence.

13 Every open interval that contains L must contain cofinitely many of
the terms of the sequence.

Notation: “cofinitely many” = “all but finitely many”
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Properties

All the usual properties you know for limits of functions more or less applies
to limits of sequences. In particular, (provided the RHS limits exist):

1. lim
n→∞

(an + kbn) = lim
n→∞

an + k lim
n→∞

bn.

2. lim
n→∞

(anbn) = lim
n→∞

an lim
n→∞

bn.

3. lim
n→∞

an
bn

=
lim

n→∞
an

lim
n→∞

bn
provided lim

n→∞
bn 6= 0.

4. If f is continuous, then lim
n→∞

f (an) = f ( lim
n→∞

an).

5. If an ≤ bn ≤ cn and lim
n→∞

an = lim
n→∞

cn, then lim
n→∞

bn exists and equal

the two limits.
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Examples

Construct 8 examples of sequences.
If any of them is impossible, cite a theorem to justify it.

convergent divergent

monotonic
bounded ??? ???

unbounded ??? ???

not monotonic
bounded ??? ???

unbounded ??? ???
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Warm up - True or false

1. Every convergent sequence is eventually monotone,
that is, eventually increasing or decreasing.

2. If lim
n→∞

an = L then lim
n→∞

an3 = L.

3. If lim
n→∞

a2n = L then lim
n→∞

an = L.

4. If a sequence diverges and is increasing, then there
exists n ∈ N such that an > 100.
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Warm up - True or false

1. If a sequence is non-decreasing and non-increasing,
then it is convergent.

2. If a sequence is not decreasing and not increasing, then
it is convergent.

3. If a sequence is increasing and decreasing, then it is
convergent.

Suppse an converges and every number in the sequence is
an integer. What can you say about the sequence?
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A suspicious calculation – What is wrong?

The sequence {an}∞n=0 defined by{
a0 = 1

∀n ∈ N , an+1 = 1− an

has limit 1/2.

Proof.

Let L = lim
n→∞

an.

an+1 = 1− an

lim
n→∞

an+1 = lim
n→∞

[1− an]

L = 1− L

L = 1/2.
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Application of MCT

We define the sequence {an}∞n=0 recursively as follows:

a0 =
√

2

an+1 =
√

2 + an ∀n ∈ N

Rough work:
1. Guess whether an is increasing or decreasing. Don’t try to prove it yet.
2. If an does converge to some a, taking limits of the recursive relation,
what must a be? (Keep in mind this is completely hypothetical as
you have not yet proved that an converges.)
3. Guess an upper bound and a lower bound for an using 1 and 2, which is
needed for MCT to work?
Proofs:
4. Prove your guess in 1.
5. Prove your bound in 3.
6. Does an converge? If so what does it converge to?
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Much less than and the Big Theorem

Much less than

Given positive sequences an and bn,
we say an � bn iff lim

n→∞
an
bn

= 0

The Big Theorem

ln(n)� na � cn � n!� nn

for every a > 0, c > 1.
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Calculations

1 lim
n→∞

n! + 2en

3n! + 4en

2 lim
n→∞

2n + (2n)2

2n+1 + n2

3 lim
n→∞

5n5 + 5n + 5n!

nn
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Much less than – True or False

Let {an}∞n=0 and {bn}∞n=0 be positive sequences.

1 IF an � bn, THEN ∀m ∈ N, am < bm.

2 IF an � bn, THEN ∃m ∈ N s.t. am < bm.

3 IF an � bn, THEN ∃n0 ∈ N s.t.
∀m ∈ N, m ≥ n0 =⇒ am < bm.

4 IF ∀m ∈ N, am < bm, THEN an � bn.

5 IF ∃m ∈ N s.t. am < bm, THEN an � bn.

6 IF ∃n0 ∈ N s.t. ∀m ∈ N, m ≥ n0 =⇒ am < bm,
THEN an � bn.
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Refining the big theorem

1 Construct a sequence {un}n such that{
∀a < 2, na � un

∀a ≥ 2, un � na

2 Construct a sequence {vn}n such that{
∀a ≤ 2, na � vn

∀a > 2, vn � na
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