Today's topics and news

- Topic: Sequences, MCT, Big Theorem
- Homework for Wednesday: Watch videos 12.1 12.10.

Homework for Friday: Watch videos 13.1-13.9.

Definition of limit of a sequence

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence. Let $L \in \mathbb{R}$.
Which statements are equivalent to " $\left\{a_{n}\right\}_{n=0}^{\infty} \longrightarrow L$ "?
(1) $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$.
(2) $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n>n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$.
(3) $\forall \varepsilon>0, \exists n_{0} \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$.
(9) $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{R}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$.
(5) $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right| \leq \varepsilon$.
(0) $\forall \varepsilon \in(0,1), \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$.
(1) $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\frac{1}{\varepsilon}$.
(8) $\forall k \in \mathbb{Z}^{+}>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<k$.
(0) $\forall k \in \mathbb{Z}^{+}>0, \exists n_{0} \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\frac{1}{k}$.

Definition of limit of a sequence (continued)

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence. Let $L \in \mathbb{R}$.
Which statements are equivalent to " $\left\{a_{n}\right\}_{n=0}^{\infty} \longrightarrow L$ "?
(8) $\forall \varepsilon>0$, the interval $(L-\varepsilon, L+\varepsilon)$ contains all the elements of the sequence, except the first few.
(9) $\forall \varepsilon>0$, the interval $(L-\varepsilon, L+\varepsilon)$ contains all the elements of the sequence, except finitely many.
(10) $\forall \varepsilon>0$, the interval $(L-\varepsilon, L+\varepsilon)$ contains cofinitely many of the terms of the sequence.
(1) $\forall \varepsilon>0$, the interval $[L-\varepsilon, L+\varepsilon]$ contains cofinitely many of the terms of the sequence.
(12) Every interval that contains L must contain cofinitely many of the terms of the sequence.
(3) Every open interval that contains L must contain cofinitely many of the terms of the sequence.

Notation: "cofinitely many" = "all but finitely many"

Properties

All the usual properties you know for limits of functions more or less applies to limits of sequences. In particular, (provided the RHS limits exist):

1. $\lim _{n \rightarrow \infty}\left(a_{n}+k b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+k \lim _{n \rightarrow \infty} b_{n}$.
2. $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \lim _{n \rightarrow \infty} b_{n}$.
3. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$ provided $\lim _{n \rightarrow \infty} b_{n} \neq 0$.
4. If f is continuous, then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)$.
5. If $a_{n} \leq b_{n} \leq c_{n}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}$, then $\lim _{n \rightarrow \infty} b_{n}$ exists and equal the two limits.

Examples

Construct 8 examples of sequences.
If any of them is impossible, cite a theorem to justify it.

		convergent	divergent
monotonic	bounded	$? ? ?$	$? ? ?$
	unbounded	$? ? ?$	$? ? ?$
not monotonic	bounded	$? ? ?$	$? ? ?$
	unbounded	$? ? ?$	$? ? ?$

Warm up - True or false

1. Every convergent sequence is eventually monotone, that is, eventually increasing or decreasing.
2. If $\lim _{n \rightarrow \infty} a_{n}=L$ then $\lim _{n \rightarrow \infty} a_{n^{3}}=L$.
3. If $\lim _{n \rightarrow \infty} a_{2 n}=L$ then $\lim _{n \rightarrow \infty} a_{n}=L$.
4. If a sequence diverges and is increasing, then there exists $n \in \mathbb{N}$ such that $a_{n}>100$.

Warm up - True or false

1. If a sequence is non-decreasing and non-increasing, then it is convergent.
2. If a sequence is not decreasing and not increasing, then it is convergent.
3. If a sequence is increasing and decreasing, then it is convergent.

Suppse a_{n} converges and every number in the sequence is an integer. What can you say about the sequence?

A suspicious calculation - What is wrong?

The sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ defined by

$$
\begin{cases} & a_{0}=1 \\ \forall n \in N, & a_{n+1}=1-a_{n}\end{cases}
$$

has limit $1 / 2$.

Proof.

- Let $L=\lim _{n \rightarrow \infty} a_{n}$.
- $a_{n+1}=1-a_{n}$
- $\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty}\left[1-a_{n}\right]$
- $L=1-L$
- $L=1 / 2$.

Application of MCT

We define the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ recursively as follows:
$a_{0}=\sqrt{2}$
$a_{n+1}=\sqrt{2+a_{n}} \forall n \in \mathbb{N}$
Rough work:

1. Guess whether a_{n} is increasing or decreasing. Don't try to prove it yet.
2. If a_{n} does converge to some a, taking limits of the recursive relation, what must a be? (Keep in mind this is completely hypothetical as you have not yet proved that a_{n} converges.)
3. Guess an upper bound and a lower bound for a_{n} using 1 and 2 , which is needed for MCT to work?

Proofs:

4. Prove your guess in 1.
5. Prove your bound in 3.
6. Does a_{n} converge? If so what does it converge to?

Much less than and the Big Theorem

Much less than

Given positive sequences a_{n} and b_{n},
we say $a_{n} \ll b_{n}$ iff $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$
The Big Theorem

$$
\ln (n) \ll n^{a} \ll c^{n} \ll n!\ll n^{n}
$$

for every $a>0, c>1$.

Calculations

($\lim _{n \rightarrow \infty} \frac{n!+2 e^{n}}{3 n!+4 e^{n}}$
(2) $\lim _{n \rightarrow \infty} \frac{2^{n}+(2 n)^{2}}{2^{n+1}+n^{2}}$

- $\lim _{n \rightarrow \infty} \frac{5 n^{5}+5^{n}+5 n!}{n^{n}}$

Much less than - True or False

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be positive sequences.

- IF $a_{n} \ll b_{n}$, THEN $\forall m \in \mathbb{N}, a_{m}<b_{m}$.
- IF $a_{n} \ll b_{n}$, THEN $\exists m \in \mathbb{N}$ s.t. $a_{m}<b_{m}$.
- IF $a_{n} \ll b_{n}$, THEN $\exists n_{0} \in \mathbb{N}$ s.t.
$\forall m \in \mathbb{N}, m \geq n_{0} \Longrightarrow a_{m}<b_{m}$.
- IF $\forall m \in \mathbb{N}, a_{m}<b_{m}$, THEN $a_{n} \ll b_{n}$.
- IF $\exists m \in \mathbb{N}$ s.t. $a_{m}<b_{m}$, THEN $a_{n} \ll b_{n}$.
- IF $\exists n_{0} \in \mathbb{N}$ s.t. $\forall m \in \mathbb{N}, m \geq n_{0} \Longrightarrow a_{m}<b_{m}$, THEN $a_{n} \ll b_{n}$.

Refining the big theorem

- Construct a sequence $\left\{u_{n}\right\}_{n}$ such that

$$
\begin{cases}\forall a<2, & n^{a} \ll u_{n} \\ \forall a \geq 2, & u_{n} \ll n^{a}\end{cases}
$$

(2) Construct a sequence $\left\{v_{n}\right\}_{n}$ such that

$$
\begin{cases}\forall a \leq 2, & n^{a} \ll v_{n} \\ \forall a>2, & v_{n} \ll n^{a}\end{cases}
$$

