Today's topics and news

- Topic: Integration by parts, integration of trig functions and rational functions
- Homework for Wednesday: Watch videos 10.1, 10.2, 11.1 and 11.2
- Homework for Friday: Watch videos 11.3-11.8.

Computation practice: Integration by parts

Use integration by parts (possibly in combination with other methods) to compute:

- $\int x e^{-2 x} d x$
- $\int x^{2} \sin x d x$
(2) $\int \ln x d x$
- $\int x^{2} \arcsin x d x$
- $\int x \arctan x d x$
- $\int e^{\cos x} \sin ^{3} x d x$
- $\int \sin \sqrt{x} d x$
- $\int e^{a x} \sin (b x) d x$

A reduction formula

Prove the following formula:
$\int \sin ^{n}(x) d x=-\frac{1}{n} \sin ^{n-1}(x) \cos (x)+\frac{n-1}{n} \int \sin ^{n-2}(x) d x$.
Hint: Start with an integration by parts on $\int \sin ^{n}(x) d x$.
This formula is sometimes useful for solving trignometric integrals. We will discuss another way of integrating $\sin ^{n}(x)$ in a few slides.

Problem

Given a function $g(x)$ s.t. $g^{\prime \prime}(x)$ is continuous on \mathbb{R} and that

$$
\int_{0}^{2 \pi} g(x) \sin (x) d x+\int_{0}^{2 \pi} g^{\prime \prime}(x) \sin (x) d x=2
$$

If $g(2 \pi)=1$, what is $g(0)$?

Practice: Integrals with trigonometric functions

Compute the following antiderivatives. (Once you get them to a form from where it is easy to finish, you may stop.)
(1) $\int \sin ^{10} x \cos x d x$ (9) $\int e^{\cos x} \cos x \sin ^{5} x d x$
(2) $\int \sin ^{10} x \cos ^{3} x d x$
(5) $\int \sin ^{4} x d x$
(3) $\int \cos ^{2} x d x$
(6) $\int_{\text {divide by } \sec x+\tan x)} \sec x d x$ (hint: multiply and

Useful trig identities

$$
\begin{array}{ll}
\sin ^{2} x+\cos ^{2} x=1 & \sin ^{2} x=\frac{1-\cos (2 x)}{2} \\
\tan ^{2} x+1=\sec ^{2} x & \cos ^{2} x=\frac{1+\cos (2 x)}{2}
\end{array}
$$

Integral of products of secant and tangent

To integrate

$$
\int \sec ^{n} x \tan ^{m} x d x
$$

- If ???, then try the substitution $u=\tan x$.
- If ???, then try the substitution $u=\sec x$.

Hint: You will need

- $\frac{d}{d x}[\tan x]=\ldots$

$$
\text { - } \frac{d}{d x}[\sec x]=\ldots
$$

- The trig identity involving sec and tan

A pair of mysterious functions

Suppose functions $\alpha(x), \beta(x)$ satisfy the following:
(1) $\alpha^{\prime}(x)=2 \beta(x)$
(2) $\beta^{\prime}(x)=\frac{1}{2} \alpha(x)$

- $\alpha(x)^{2}-\beta(x)^{2}=1$

Do not try to find formulas for $\alpha(x)$ and $\beta(x)$. Integrate the following:
(1) $\int \sin (x) \alpha(x) d x$
(2) $\int \frac{\beta(x)^{3}}{\alpha(x)^{4}} d x$

Rational integrals

- Calculate $\int \frac{1}{x+a} d x$
- Reduce to common denominator

$$
\frac{2}{x}-\frac{3}{x+3}
$$

- Calculate $\int \frac{-x+6}{x^{2}+3 x} d x$
- Calculate $\int \frac{1}{x^{2}+3 x} d x$
- Calculate $\int \frac{1}{x^{3}-x} d x$

Repeated factors

(c) Calculate $\int \frac{1}{(x+1)^{n}} d x$ for $n>1$
(2 Calculate $\int \frac{(x+1)-1}{(x+1)^{2}} d x$

- Calculate $\int \frac{2 x+6}{(x+1)^{2}} d x$
- Calculate $\int \frac{x^{2}}{(x+1)^{3}} d x$
- How would you calculate $\int \frac{\text { polynomial }}{(x+1)^{3}} d x$?

Irreducible quadratics

(1) Calculate $\int \frac{1}{x^{2}+1} d x$ and $\int \frac{x}{x^{2}+1} d x$.

Hint: These two are very short.
(2) Calculate $\int \frac{2 x+3}{x^{2}+1} d x$

- Calculate $\int \frac{x^{3}}{x^{2}+1} d x$
- Calculate $\int \frac{x}{x^{2}+x+1} d x$

Hint: Transform it into one like the previous ones

Messier rational functions

(1) How could we compute an integral of the form

$$
\int \frac{\text { polynomial }}{(x+1)^{3}(x+2)} d x ?
$$

(2 How could we compute an integral of the form

$$
\int \frac{\text { polynomial }}{(x+1)^{3}(x+2) x^{4}\left(x^{2}+1\right)\left(x^{2}+4 x+7\right)} d x ?
$$

