- Topic: Integration by parts, integration of trig functions and rational functions
- Homework for Wednesday: Watch videos 10.1, 10.2, 11.1 and 11.2
- Homework for Friday: Watch videos 11.3 11.8.

Computation practice: Integration by parts

Use integration by parts (possibly in combination with other methods) to compute:

•
$$\int xe^{-2x} dx$$

• $\int \ln x \, dx$
• $\int \ln x \, dx$
• $\int x^2 \operatorname{sin} x \, dx$
• $\int x^2 \operatorname{arcsin} x \, dx$
• $\int x \arctan x \, dx$
• $\int e^{\cos x} \sin^3 x \, dx$
• $\int \sin \sqrt{x} \, dx$
• $\int e^{ax} \sin(bx) dx$

Prove the following formula:

$$\int \sin^n(x) dx = -\frac{1}{n} \sin^{n-1}(x) \cos(x) + \frac{n-1}{n} \int \sin^{n-2}(x) dx.$$

Hint: Start with an integration by parts on $\int \sin^n(x) dx$.

This formula is sometimes useful for solving trignometric integrals. We will discuss another way of integrating $sin^{n}(x)$ in a few slides.

Given a function g(x) s.t. g''(x) is continuous on \mathbb{R} and that

$$\int_{0}^{2\pi} g(x) \sin(x) dx + \int_{0}^{2\pi} g''(x) \sin(x) dx = 2.$$

If $g(2\pi) = 1$, what is g(0)?

Practice: Integrals with trigonometric functions

Compute the following antiderivatives. (Once you get them to a form from where it is easy to finish, you may stop.)

1
$$\int \sin^{10} x \cos x \, dx$$
 2 $\int \sin^{10} x \cos^3 x \, dx$
 3 $\int \sin^{10} x \cos^3 x \, dx$
 3 $\int \sin^4 x \, dx$
 3 $\int \cos^2 x \, dx$
 4 $\int \sec x \, dx$
 4 $\int \det x \, dx$
 5 $\int \sec x \, dx$
 4 $\int \det x \, dx$
 5 $\int \sec x \, dx$
 4 $\int \det x \, dx$
 5 $\int \sec x \, dx$
 5 $\int \det x \, dx$

Useful trig identities

$$\sin^2 x + \cos^2 x = 1$$

 $\tan^2 x + 1 = \sec^2 x$
 $\sin^2 x = \frac{1 - \cos(2x)}{2}$
 $\cos^2 x = \frac{1 + \cos(2x)}{2}$

Integral of products of secant and tangent

To integrate

$$\int \sec^n x \tan^m x \, dx$$

If ???, then try the substitution u = tan x.
If ???, then try the substitution u = sec x.

Hint: You will need

•
$$\frac{d}{dx} [\tan x] = \dots$$
 • $\frac{d}{dx} [\sec x] = \dots$

• The trig identity involving sec and tan

Suppose functions $\alpha(x)$, $\beta(x)$ satisfy the following:

•
$$\alpha'(x) = 2\beta(x)$$

• $\beta'(x) = \frac{1}{2}\alpha(x)$
• $\alpha(x)^2 - \beta(x)^2 = 1$

Do not try to find formulas for $\alpha(x)$ and $\beta(x)$. Integrate the following:

•
$$\int \sin(x) \alpha(x) dx$$

• $\int \frac{\beta(x)^3}{\alpha(x)^4} dx$

Rational integrals

• Calculate
$$\int \frac{1}{x+a} dx$$

Reduce to common denominator

_

$$\frac{2}{x} - \frac{3}{x+3}$$

• Calculate
$$\int \frac{-x+6}{x^2+3x} dx$$

• Calculate $\int \frac{1}{x^2+3x} dx$
• Calculate $\int \frac{1}{x^3-x} dx$

Repeated factors

• Calculate $\int \frac{1}{(x+1)^n} dx$ for n > 1• Calculate $\int \frac{(x+1)-1}{(x+1)^2} dx$ • Calculate $\int \frac{2x + o}{(x+1)^2} dx$ • Calculate $\int \frac{x^2}{(x+1)^3} dx$ • How would you calculate $\int \frac{dx}{dx} dx$?

Irreducible quadratics

• Calculate
$$\int \frac{1}{x^2 + 1} dx$$
 and $\int \frac{x}{x^2 + 1} dx$.
Hint: These two are very short.

• Calculate
$$\int \frac{2x+3}{x^2+1} dx$$

• Calculate
$$\int \frac{x^3}{x^2 + 1} dx$$

• Calculate
$$\int \frac{x}{x^2 + x + 1} \, dx$$

Hint: Transform it into one like the previous ones

• How could we compute an integral of the form

$$\int \frac{\text{polynomial}}{(x+1)^3(x+2)} dx ?$$

One of the second terms of the form

$$\int \frac{\text{polynomial}}{(x+1)^3(x+2)x^4(x^2+1)(x^2+4x+7)} dx ?$$