Today's topics and news

Topics: Integrability; Riemann integrals, FTC

Homework for Wednesday: Watch videos 8.3 8.7, 9.1-9.4.

Homework for Friday: Watch videos 9.5-9.12, 9.15-9.17.

Joining partitions

Assume

$$
\begin{array}{ll}
L_{P}(f)=2, & U_{P}(f)=6 \\
L_{Q}(f)=3, & U_{Q}(f)=8
\end{array}
$$

(1) Is $P \subseteq Q$?
(2) Is $Q \subseteq P$?

- What can you say about $L_{P \cup Q}(f)$ and $U_{P \cup Q}(f)$?

Lower and upper sums

Let f be a decreasing, bounded function on $[a, b]$.
Let $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ be a partition of $[a, b]$
Which one (or ones) is a valid equation for $L_{P}(f)$? For $U_{f}(P)$?
(1) $\sum_{i=0}^{N} \Delta x_{i} f\left(x_{i}\right)$
(3) $\sum_{i=0}^{N-1} \Delta x_{i} f\left(x_{i}\right)$
(6) $\sum_{i=1}^{N} \Delta x_{i} f\left(x_{i-1}\right)$
(2) $\sum_{i=1}^{N} \Delta x_{i} f\left(x_{i}\right)$
(9) $\sum_{i=1}^{N} \Delta x_{i} f\left(x_{i+1}\right)$
(6) $\sum_{i=0}^{N-1} \Delta x_{i+1} f\left(x_{i}\right)$

Recall: $\Delta x_{i}=x_{i}-x_{i-1}$.

Example 1: a constant function

Consider the function $f(x)=2$ on $[0,4]$.
(1) Given $P=\{0,1, e, \pi, 4\}$, compute $L_{P}(f)$ and $U_{P}(f)$.
(2 Explicitly compute all the upper sums and all the lower sums.

- Compute $\underline{I_{0}^{4}}(f)$
- Compute $\overline{I_{0}^{4}}(f)$
- Is f integrable on $[0,4]$?

Example 2: a non-continuous function

Consider the function $f(x)=\left\{\begin{array}{ll}0 & x=0 \\ 5 & 0<x \leq 1\end{array}\right.$, defined on $[0,1]$.
(1) Let $P=\{0,0.2,0.5,0.9,1\}$.

Calculate $L_{P}(f)$ and $U_{P}(f)$ for this partition.
(2) Fix an arbitrary partition $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ of $[0,1]$.

What is $U_{P}(f)$? What is $L_{P}(f)$? (Draw a picture!)
(3) Find a partition P such that $L_{P}(f)=4.99$.
(9) What is the upper integral, $\overline{I_{0}^{1}}(f)$?
(5) What is the lower integral, $\underline{I_{0}^{1}}(f)$?
(0) Is f integrable on $[0,1]$?

Is this possible?

Find bounded functions f and g on $[0,1]$ such that

- f is not integrable on $[0,1]$,
- g is not integrable on $[0,1]$,
- $f+g$ is integrable on $[0,1]$. or prove this is impossible.

Properties of the integral

Assume we know the following

$$
\int_{0}^{2} f(x) d x=3, \quad \int_{0}^{4} f(x) d x=9, \quad \int_{0}^{4} g(x) d x=2
$$

Compute:

- $\int_{0}^{2} f(t) d t$
- $\int_{2}^{4} f(x) d x$
(2) $\int_{0}^{2} f(t) d x$
- $\int_{2}^{0} f(x) d x$
- $\int_{-2}^{0} f(x) d x$
- $\int_{0}^{4}[f(x)-2 g(x)] d x$

Riemann sums backwards

Interpret the following limits as integrals:
(1) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n} \sin \frac{i}{n}$
(3) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{n+i}{n^{2}}$

Towards FTC

Compute:
(1) $\int_{0}^{1} f(t) d t$
(2) $\int_{0}^{2} f(t) d t$

- $\int_{0}^{3} f(t) d t$
- $\int_{0}^{4} f(t) d t$
- $\int_{0}^{5} f(t) d t$

Towards FTC (continued)

Call $F(x)=\int_{0}^{x} f(t) d t$. This is a new function.

- Sketch the graph of $y=F(x)$.
- Using the graph you just sketched, sketch the graph of $y=F^{\prime}(x)$.

Three expressions containing the integral symbol

Fix $a, b \in \mathbb{R}$. Given a function f integrable on \mathbb{R}.
Recall what type of object the following are and how they are defined.

1. $\int_{a}^{b} f(x) d x$
2. $\int_{a}^{x} f(t) d t$
3. $\int f(x) d x$

Which of the three are related from the definition?

Functions defined by integrals

Which ones of these are valid ways to define functions?
(1) $F(x)=\int_{0}^{x} \frac{t}{1+t^{8}} d t$
(5) $F(x)=\int_{\sin x}^{e^{x}} \frac{t}{1+t^{8}} d t$
(2) $F(x)=\int_{0}^{x} \frac{x}{1+x^{8}} d x$
(6) $F(x)=\int_{0}^{3} \frac{t}{1+x^{2}+t^{8}} d t$
(3) $F(x)=\int_{0}^{x} \frac{x}{1+t^{8}} d t$
(1) $F(x)=x \int_{\sin x}^{e^{x}} \frac{t}{1+x^{2}+t^{8}} d t$
(9) $F(x)=\int_{0}^{x^{2}} \frac{t}{1+t^{8}} d t$
(8) $F(x)=t \int_{\sin x}^{e^{x}} \frac{t}{1+x^{2}+t^{8}} d t$

The " ε-reformulation" of integrability - First proof

You are going to prove

Claim

Let f be a bounded function on $[a, b]$.

- IF f is integrable on $[a, b]$
- THEN " $\forall \varepsilon>0, \exists$ a partition P of $[a, b]$, s.t. $U_{P}(f)-L_{P}(f)<\varepsilon$ ".
(1) Recall the definition of " f is integrable on $[a, b]$ ".
(2) Write down the structure of the proof.
(3) Fix $\varepsilon>0$. Show there is a partition P s.t. $U_{P}(f)<\overline{I_{a}^{b}}(f)+\frac{\varepsilon}{2}$. Why?
(9) Assume f is integrable on $[a, b]$. Fix $\varepsilon>0$.

Show there are partitions P_{1} and P_{2} s.t. $U_{P_{1}}(f)-L_{P_{2}}(f)<\varepsilon$.
(5) Using P_{1} and P_{2} from the previous step, construct a partition P such that $U_{P}(f)-L_{P}(f)<\varepsilon$.
(6) Write down a proof for the claim.

The " ε-reformulation" of integrability - Second proof

You are going to prove

Claim

Let f be a bounded function on $[a, b]$.

- IF $\quad \forall \varepsilon>0, \exists$ a partition P of $[a, b]$, s.t. $U_{P}(f)-L_{P}(f)<\varepsilon "$.
- THEN f is integrable on $[a, b]$
(1) Recall the definition of " f is integrable on $[a, b]$ ".
(2) For any partition P, order the quantities $U_{P}(f), L_{P}(f), \overline{l_{a}^{b}}(f), \underline{l_{a}^{b}}(f)$.
(3) For any partition P, order the quantities $U_{P}(f)-L_{P}(f)$, $\overline{I_{a}^{b}}(f)-\underline{I_{a}^{b}}(f)$, and 0 .
(9) Write down a proof for the claim.

The " ε-reformulation" of integrability
Let f be a bounded function on $[a, b]$.
f is integrable on $[a, b]$
IFF
$\forall \varepsilon>0, \exists$ a partition P of $[a, b]$, s.t. $U_{P}(f)-L_{P}(f)<\varepsilon$.

