- Topics: Integrability; Riemann integrals, FTC
- Homework for Wednesday: Watch videos 8.3 8.7, 9.1 9.4.
- Homework for Friday: Watch videos 9.5 9.12, 9.15 9.17.

Assume

$$L_P(f) = 2, \quad U_P(f) = 6$$

 $L_Q(f) = 3, \quad U_Q(f) = 8$

• Is
$$P \subseteq Q$$
?

• Is
$$Q \subseteq P$$
?

• What can you say about $L_{P\cup Q}(f)$ and $U_{P\cup Q}(f)$?

Let *f* be a **decreasing**, bounded function on [a, b]. Let $P = \{x_0, x_1, \dots, x_N\}$ be a partition of [a, b]

Which one (or ones) is a valid equation for $L_P(f)$? For $U_f(P)$?

$$\sum_{i=0}^{N} \Delta x_{i} f(x_{i})$$

$$\sum_{i=0}^{N-1} \Delta x_{i} f(x_{i})$$

$$\sum_{i=1}^{N} \Delta x_{i} f(x_{i-1})$$

$$\sum_{i=1}^{N} \Delta x_{i} f(x_{i})$$

$$\sum_{i=1}^{N} \Delta x_{i} f(x_{i+1})$$

$$\sum_{i=0}^{N-1} \Delta x_{i+1} f(x_{i})$$

Recall: $\Delta x_i = x_i - x_{i-1}$.

Consider the function f(x) = 2 on [0, 4].

- Given $P = \{0, 1, e, \pi, 4\}$, compute $L_P(f)$ and $U_P(f)$.
- Explicitly compute all the upper sums and all the lower sums.
- Compute $\underline{I_0^4}(f)$
- Compute $\overline{I_0^4}(f)$
- Is f integrable on [0, 4]?

Consider the function $f(x) = \begin{cases} 0 & x = 0 \\ 5 & 0 < x \le 1 \end{cases}$, defined on [0, 1].

- Let $P = \{0, 0.2, 0.5, 0.9, 1\}$. Calculate $L_P(f)$ and $U_P(f)$ for this partition.
- Solution Fix an arbitrary partition $P = \{x_0, x_1, \dots, x_N\}$ of [0, 1]. What is $U_P(f)$? What is $L_P(f)$? (Draw a picture!)
- Find a partition P such that $L_P(f) = 4.99$.
- What is the upper integral, $\overline{I_0^1}(f)$?
- What is the lower integral, $I_0^1(f)$?
- Is f integrable on [0, 1]?

Find bounded functions f and g on [0, 1] such that

- f is not integrable on [0, 1],
- g is not integrable on [0, 1],
- f + g is integrable on [0, 1].

or prove this is impossible.

Properties of the integral

Assume we know the following

$$\int_0^2 f(x) dx = 3, \quad \int_0^4 f(x) dx = 9, \quad \int_0^4 g(x) dx = 2.$$

Compute:

a
$$\int_{0}^{2} f(t) dt$$
a $\int_{2}^{4} f(x) dx$
a $\int_{0}^{2} f(t) dx$
b $\int_{-2}^{0} f(x) dx$
c $\int_{2}^{0} f(x) dx$
c $\int_{0}^{4} [f(x) - 2g(x)] dx$

Qin Deng

Interpret the following limits as integrals:

•
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \sin \frac{i}{n}$$

$$\lim_{n\to\infty}\sum_{i=1}^n\frac{n+i}{n^2}$$

Towards FTC (continued)

Call $F(x) = \int_0^x f(t) dt$. This is a new function.

- Sketch the graph of y = F(x).
- Using the graph you just sketched, sketch the graph of y = F'(x).

Fix $a, b \in \mathbb{R}$. Given a function f integrable on \mathbb{R} .

Recall what type of object the following are and how they are defined.

1.
$$\int_{a}^{b} f(x) dx$$

2.
$$\int_{a}^{x} f(t) dt$$

3.
$$\int f(x) dx$$

Which of the three are related from the definition?

Which ones of these are valid ways to define functions?

a
$$F(x) = \int_{0}^{x} \frac{t}{1+t^{8}} dt$$
b $F(x) = \int_{0}^{x} \frac{x}{1+t^{8}} dt$
c $F(x) = \int_{0}^{x} \frac{x}{1+x^{8}} dx$
c $F(x) = \int_{0}^{x} \frac{x}{1+t^{8}} dt$
c $F(x) = \int_{0}^{x} \frac{x}{1+t^{8}} dt$
c $F(x) = \int_{0}^{x^{2}} \frac{t}{1+t^{8}} dt$
c $F(x) = x \int_{\sin x}^{e^{x}} \frac{t}{1+x^{2}+t^{8}} dt$
c $F(x) = \int_{0}^{x^{2}} \frac{t}{1+t^{8}} dt$
c $F(x) = t \int_{\sin x}^{e^{x}} \frac{t}{1+x^{2}+t^{8}} dt$

The " ε -reformulation" of integrability - First proof

You are going to prove

Claim

Let f be a bounded function on [a, b].

- IF f is integrable on [a, b]
- THEN " $\forall \varepsilon > 0, \exists$ a partition P of [a, b], s.t. $U_P(f) L_P(f) < \varepsilon$ ".
- Recall the definition of "f is integrable on [a, b]".
- Write down the structure of the proof.
- Solution Fix $\varepsilon > 0$. Show there is a partition P s.t. $U_P(f) < \overline{I_a^b}(f) + \frac{\varepsilon}{2}$. Why?
- Assume f is integrable on [a, b]. Fix $\varepsilon > 0$. Show there are partitions P_1 and P_2 s.t. $U_{P_1}(f) - L_{P_2}(f) < \varepsilon$.
- Using P₁ and P₂ from the previous step, construct a partition P such that U_P(f) L_P(f) < ε.
- Write down a proof for the claim.

The " ε -reformulation" of integrability - Second proof

You are going to prove

Claim

Let f be a bounded function on [a, b].

- IF " $\forall \varepsilon > 0, \exists$ a partition P of [a, b], s.t. $U_P(f) L_P(f) < \varepsilon$ ".
- THEN f is integrable on [a, b]

- Recall the definition of "f is integrable on [a, b]".
- **2** For any partition P, order the quantities $U_P(f)$, $L_P(f)$, $\overline{I_a^b}(f)$, $I_a^b(f)$.
- So For any partition P, order the quantities $U_P(f) L_P(f)$, $\overline{I_a^b}(f) \underline{I_a^b}(f)$, and 0.
- Write down a proof for the claim.

The " ε -reformulation" of integrability

Let f be a bounded function on [a, b].

f is integrable on [a, b]

IFF

 $\forall \varepsilon > 0, \exists$ a partition P of [a, b], s.t. $U_P(f) - L_P(f) < \varepsilon$.