- My name is Qin (pronounced "Chin").
- E-mail: qin.deng@mail.utoronto.ca
- Office hours: PG003 WF4-5
- Website: http://www.math.toronto.edu/dengqin/MAT137_S19.html

- **Topics:** Sigma and sums; Sup and inf; Definition of the integral
- Homework for Friday: Watch videos 7.8 7.12, 8.1 and 8.2.
- **PS5** is due Wednesday, July 10th. You should have already received Crowdmark submission links. Contact me if you have not.

Recall (7.2) that \sum is called sigma and is a notation used the denote sum.

Given
$$a_1, a_2, ... a_n \in \mathbb{R}, \ \sum_{k=1}^n a_k = a_1 + a_2 + ... + a_n.$$

Here k is a dummy variable and has no meaning outside of \sum .

Define $\forall k \in \mathbb{N}, a_k = 2k + 1$. Compute:

1.
$$\sum_{k=2}^{4} a_k$$
.
2. $\sum_{i=2}^{4} a_k$.
3. $\sum_{i=2}^{4} a_i$.

Write these sums with sigma notation

a)
$$1^{5} + 2^{5} + 3^{5} + 4^{5} + \ldots + 100^{5}$$

a) $\frac{2}{4^{2}} + \frac{2}{5^{2}} + \frac{2}{6^{2}} + \frac{2}{7^{2}} + \ldots + \frac{2}{N^{2}}$

b) $\frac{1}{1!} - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \ldots + \frac{1}{81!}$

a) $\frac{x^{2}}{3!} + \frac{2x^{3}}{4!} + \frac{3x^{4}}{5!} + \frac{4x^{5}}{6!} + \ldots + \frac{999x^{1000}}{1001!}$

Double sums

Compute:

1.
$$\sum_{i=1}^{n} (\sum_{k=1}^{n} 1)$$

2. $\sum_{i=1}^{n} (\sum_{k=1}^{i} 1)$
3. $\sum_{i=1}^{n} (\sum_{k=1}^{i} i)$

4.
$$\sum_{i=1}^{n} (\sum_{k=1}^{i} k)$$

5. $\sum_{i=1}^{n} (\sum_{k=1}^{i} (ik))$

Use the following formulas:

1.
$$\sum_{k=1}^{n} k = \frac{(n)(n+1)}{2}$$

2. $\sum_{k=1}^{n} k^2 = \frac{(n)(n+1)(2n+1)}{6}$

3.
$$\sum_{k=1}^{n} k^3 = \frac{(n)^2(n+1)^2}{4}$$

Given $A \subseteq \mathbb{R}$. Recall sup(A) is by definition the least upperbound of A provided such a number exists.

Therefore, to check if a number a is in fact the supremum of a given set A, one needs to check two conditions:

1. *a* is an upperbound of *A* (i.e. $\forall x \in A, a \ge x$).

2. if b is an upperbound of A, then $a \leq b$ (i.e. $\forall b \in \mathbb{R}$, if $(\forall x \in A, b \geq x)$, then $a \leq b$).

Empty set

- Does \emptyset have an upper bound ?
- Does \emptyset have a supremum?
- Does \emptyset have a maximum?
- Is \emptyset bounded above?

Recall:

Let $A \subseteq \mathbb{R}$. Let $a \in \mathbb{R}$.

- *a* is an **upper bound** of *A* means $\forall x \in A, x \leq a$.
- a is the least upper bound (lub) or supremum (sup) of A means
 - *a* is an upper bound of *A*, and
 - there are no smaller upper bounds.

sup existence theorem

Let $A \subseteq \mathbb{R}$, A has a supremum iff A is bounded above and non-empty.

Assume *u* is an upper bound of the set *A*, which of the following statements are equivalent to $u = \sup(A)$?

- 1. $\forall v \leq u, v$ is not an upper bound of A.
- 2. $\forall v < u$, v is not an upper bound of A.
- 3. $\forall v < u, \exists x \in A \text{ s.t. } v < x.$
- 4. $\forall v < u, \exists x \in A \text{ s.t. } v \leq x.$
- 5. $\forall v < u$, $\exists x \in A$ s.t. $v < x \le u$.
- 6. $\forall v < u, \exists x \in A \text{ s.t. } v < x < u.$
- 7. $\forall \epsilon > 0, \exists x \in A \text{ s.t. } u \epsilon < x \leq u.$
- 8. $\forall \epsilon > 0, \exists x \in A \text{ s.t. } u \epsilon < x < u.$

Sup and inf proof

Let A = [0, 1)

Prove inf(A) = 0:

1. Check 0 a lower bound.

2. Suppose *I* is another lower bound of *A*, why does 0 have to be larger?

Prove sup(A) = 1:

1. Check 1 an upper bound.

2. Suppose u is another upper bound of A, and assume it's less than 1, come up with a number in A (using u) which is for sure larger than u, therefore contradicting the fact that u is an upper bound.

Partitions

Which of the following are partitions of [0, 2]?

- $1. \ [0, 2]$
- 2. (0,2)
- 3. $\{0, 2\}$
- 4. $\{1, 2\}$
- 5. $\{0, 1, 1.5, 2\}$

A **partition** of [a, b] is **expressed** as a finite set *S* where $S \subseteq [a, b]$ and $a, b \in S$. It should be **thought of** as a way of dividing up the interval [a, b], where you divide [a, b] at all elements of *S*. Partitions are often written in order.

Given a **bounded function** f on [a, b] and a partition P, there are two ways to estimate the "signed area under the curve of f". These are called upper sum $U_P(f)$ and the lower sum $L_P(f)$. As you will see in the next slide, these estimates **depend** on the partition.

Exercise: Given a partition $\{a = x_0 < x_1 < ... x_n = b\}$ of [a, b] and a bounded function f. Define $U_P(f)$.

Compute $U_P(f)$ for the following partitions:

1. $\{0, 2\}$ 2. $\{0, 0.5, 1.5, 2\}$ We see that given a bounded function f on [a, b] and a partition P of [a, b], we can produce two estimates for the area under f between a and b, one of which is an underestimate and one of which is an overestimate.

There are infinitely many partitions, each giving their own (potentially) distinct over- and underestimates. If we want to get a true notion of the area, we can look all possible partitions and their corresponding overestimates $U_P(f)$, and find the "smallest" of all of them. We can similarly look at the all possible partitions and their corresponding underestimates $L_P(f)$, and find the "largest" of all of them. This motivates the following definitions:

- 1. The upper integral $\overline{I_a^b}(f) :=$
- 2. The lower integral $\underline{I_a^b}(f) :=$

Integrability

1. The upper integral $\overline{I_a^b}(f) := \inf(\{U_P(f) : P \text{ is a partition of } [a, b]\})$ 2. The lower integral $I_a^b(f) := \sup(\{L_P(f) : P \text{ is a partition of } [a, b]\})$

Note there is always a relationship between these two numbers: $\overline{I_a^b}(f) \ge \underline{I_a^b}(f)$.

These are the best possible candidates for area under f and there's no preference for one over the other. That's why if they are not equal (i.e. $\overline{I_a^b}(f) > \underline{I_a^b}(f)$), we don't have a good notion of area and we say the function is not integrable. And if they are equal, then the function is **integrable** and

$$\int_{a}^{b} f(x) dx = \overline{I_{a}^{b}}(f) = \underline{I_{a}^{b}}(f).$$

Is $\frac{1}{\sqrt{x}}$ integrable on [0, 1]?

Answer: No. It's not bounded on [0, 1] so the theory of integration we have developed does not apply. We will learn this function does have an improper integral in several weeks.