Introduction

- My name is Qin (pronounced "Chin").
- E-mail: qin.deng@mail.utoronto.ca
- Office hours: PG003 WF4-5
- Website: http://www.math.toronto.edu/dengqin/MAT137_S19.html

Today's topics and news

- Topics: Sigma and sums; Sup and inf; Definition of the integral

Homework for Friday: Watch videos 7.8-7.12, 8.1 and 8.2.

PS5 is due Wednesday, July 10th. You should have already received Crowdmark submission links.
Contact me if you have not.

Sigma

Recall (7.2) that \sum is called sigma and is a notation used the denote sum.
Given $a_{1}, a_{2}, \ldots a_{n} \in \mathbb{R}, \sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots+a_{n}$.
Here k is a dummy variable and has no meaning outside of \sum.
Define $\forall k \in \mathbb{N}, a_{k}=2 k+1$. Compute:

1. $\sum_{k=2}^{4} a_{k}$.
2. $\sum_{i=2}^{4} a_{k}$.
3. $\sum_{i=2}^{4} a_{i}$.

Write these sums with sigma notation

- $1^{5}+2^{5}+3^{5}+4^{5}+\ldots+100^{5}$
- $\frac{2}{4^{2}}+\frac{2}{5^{2}}+\frac{2}{6^{2}}+\frac{2}{7^{2}}+\ldots+\frac{2}{N^{2}}$
- $\frac{1}{1!}-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\ldots+\frac{1}{81!}$
- $\frac{x^{2}}{3!}+\frac{2 x^{3}}{4!}+\frac{3 x^{4}}{5!}+\frac{4 x^{5}}{6!}+\ldots+\frac{999 x^{1000}}{1001!}$

Re-writing sums

(1) $\sum_{i=1}^{100} \tan i-\sum_{i=1}^{50} \tan i=\sum_{? ? ?}^{? ? ?} ? ? ?$
(2) $\sum_{i=1}^{N}(2 i-1)^{5}=\sum_{i=0}^{N-1} ? ? ?$

Double sums

Compute:

1. $\sum_{i=1}^{n}\left(\sum_{k=1}^{n} 1\right)$
2. $\sum_{i=1}^{n}\left(\sum_{k=1}^{i} 1\right)$
3. $\sum_{i=1}^{n}\left(\sum_{k=1}^{i} i\right)$

Use the following formulas:

$$
\begin{aligned}
& \text { 1. } \sum_{k=1}^{n} k=\frac{(n)(n+1)}{2} \\
& \text { 2. } \sum_{k=1}^{n} k^{2}=\frac{(n)(n+1)(2 n+1)}{6}
\end{aligned}
$$

4. $\sum_{i=1}^{n}\left(\sum_{k=1}^{i} k\right)$
5. $\sum_{i=1}^{n}\left(\sum_{k=1}^{i}(i k)\right)$

Supremum and infimum

Given $A \subseteq \mathbb{R}$. Recall $\sup (A)$ is by definition the least upperbound of A provided such a number exists.

Therefore, to check if a number a is in fact the supremum of a given set A, one needs to check two conditions:

1. a is an upperbound of A (i.e. $\forall x \in A, a \geq x$).
2. if b is an upperbound of A, then $a \leq b$ (i.e. $\forall b \in \mathbb{R}$, if $(\forall x \in A, b \geq x)$, then $a \leq b)$.

Empty set

© Does \emptyset have an upper bound?
(2 Does \emptyset have a supremum?

- Does \emptyset have a maximum?
- Is \emptyset bounded above?

Recall:

Let $A \subseteq \mathbb{R}$. Let $a \in \mathbb{R}$.

- a is an upper bound of A means $\forall x \in A, x \leq a$.
- a is the least upper bound (lub) or supremum (sup) of A means
- a is an upper bound of A, and
- there are no smaller upper bounds.

sup and inf existence theorem

sup existence theorem

Let $A \subseteq \mathbb{R}$,
A has a supremum iff A is bounded above and non-empty.

Equivalent definitions of supremum

Assume u is an upper bound of the set A, which of the following statements are equivalent to $u=\sup (A)$?

1. $\forall v \leq u, v$ is not an upper bound of A.
2. $\forall v<u, v$ is not an upper bound of A.
3. $\forall v<u, \exists x \in A$ s.t. $v<x$.
4. $\forall v<u, \exists x \in A$ s.t. $v \leq x$.
5. $\forall v<u, \exists x \in A$ s.t. $v<x \leq u$.
6. $\forall v<u, \exists x \in A$ s.t. $v<x<u$.
7. $\forall \epsilon>0, \exists x \in A$ s.t. $u-\epsilon<x \leq u$.
8. $\forall \epsilon>0, \exists x \in A$ s.t. $u-\epsilon<x<u$.

Sup and inf proof

Let $A=[0,1)$
Prove $\inf (A)=0$:

1. Check 0 a lower bound.
2. Suppose I is another lower bound of A, why does 0 have to be larger?
$\operatorname{Prove} \sup (A)=1$:
3. Check 1 an upper bound.
4. Suppose u is another upper bound of A, and assume it's less than 1 , come up with a number in A (using u) which is for sure larger than u, therefore contradicting the fact that u is an upper bound.

Partitions

Which of the following are partitions of $[0,2]$?

1. $[0,2]$
2. $(0,2)$
3. $\{0,2\}$
4. $\{1,2\}$
5. $\{0,1,1.5,2\}$

A partition of $[a, b]$ is expressed as a finite set S where $S \subseteq[a, b]$ and $a, b \in S$. It should be thought of as a way of dividing up the interval $[a, b]$, where you divide $[a, b]$ at all elements of S. Partitions are often written in order.

Definition of upper sum

Given a bounded function f on $[a, b]$ and a partition P, there are two ways to estimate the "signed area under the curve of $f^{\prime \prime}$. These are called upper sum $U_{P}(f)$ and the lower sum $L_{P}(f)$. As you will see in the next slide, these estimates depend on the partition.

Exercise: Given a partition $\left\{a=x_{0}<x_{1}<\ldots x_{n}=b\right\}$ of $[a, b]$ and a bounded function f. Define $U_{P}(f)$.

Computing $U_{P}(f)$

Compute $U_{P}(f)$ for the following partitions:

1. $\{0,2\}$
2. $\{0,0.5,1.5,2\}$

Upper and lower integrals

We see that given a bounded function f on $[a, b]$ and a partition P of [a, b], we can produce two estimates for the area under f between a and b, one of which is an underestimate and one of which is an overestimate.

There are infinitely many partitions, each giving their own (potentially) distinct over- and underestimates. If we want to get a true notion of the area, we can look all possible partitions and their corresponding overestimates $U_{P}(f)$, and find the "smallest" of all of them. We can similarly look at the all possible partitions and their corresponding underestimates $L_{P}(f)$, and find the "largest" of all of them. This motivates the following definitions:

1. The upper integral $\overline{l_{a}^{b}}(f):=$
2. The lower integral $\underline{l}_{\underline{a}}^{b}(f):=$

Integrability

1. The upper integral $\overline{l_{a}^{b}}(f):=\inf \left(\left\{U_{P}(f): P\right.\right.$ is a partition of $\left.\left.[a, b]\right\}\right)$
2. The lower integral $\underline{l}_{\underline{b}}^{b}(f):=\sup \left(\left\{L_{P}(f): \mathbf{P}\right.\right.$ is a partition of $\left.\left.[a, b]\right\}\right)$

Note there is always a relationship between these two numbers: $\overline{l_{a}^{b}}(f) \geq \underline{a}{ }_{a}^{b}(f)$.

These are the best possible candidates for area under f and there's no preference for one over the other. That's why if they are not equal (i.e. $\left.\overline{l_{a}^{b}}(f)>\underline{l_{a}^{b}}(f)\right)$, we don't have a good notion of area and we say the function is not integrable. And if they are equal, then the function is integrable and

$$
\int_{a}^{b} f(x) d x=\overline{l_{a}^{b}}(f)=\underline{l_{a}^{b}}(f) .
$$

Trick question

Is $\frac{1}{\sqrt{x}}$ integrable on $[0,1]$?
Answer: No. It's not bounded on $[0,1]$ so the theory of integration we have developed does not apply. We will learn this function does have an improper integral in several weeks.

