Today's topics and news

- Topic: Taylor series and applications

Homework: Study for the exam!

Lagrange's Remainder Theorem

Lagrange's Remainder Theorem

Suppose f is C^{n+1} on some interval \mathbb{I} containing a.
Let P_{n} be the $n^{\text {th }}$ Taylor Polynomial of f at a.
Consider $R_{n}(x)=f(x)-P_{n}(x)$ the remainder,
then for any $x \in \mathbb{I}$, there exists ξ between a and x s.t.

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}
$$

Notice that ξ depends on n and x.

Proving a function is analytic

We will now show that $\sin (x)$ is analytic on \mathbb{R}. To show a function f is analytic on some D we need to show that f is analytic on each point $a \in \mathbb{D}$. This in turn means that the Taylor series of f centred at a converges to f in a small neighbourhood of a.

We will call $S_{a}(x)$ the Taylor series for $\sin (x)$ centred around a. We will call $P_{n, a}(x)$ the $n^{\text {th }}$ Taylor polynomial for $\sin (x)$ centred around a.

1. We will show that for any $a, x \in \mathbb{R}, S_{a}(x)$ converges to $\sin (x)$. In other words, the small neighbourhood around each a for which S_{a} converges to f can in fact be taken to be all of \mathbb{R}. Use Lagrange's Theorem to write down an expression for the remainder $R_{n, a}(x)=f(x)-P_{n, a}(x)$
2. Show that $\lim _{n \rightarrow \infty} R_{n, a}(x)=0$.

This of course means $\sin (x)$ is analytic on \mathbb{R}.

Warm-up: Taylor series gymnastics

Write the following functions in a way where you can easily find their Maclaurin series using series you already know.
($f(x)=\frac{x^{2}}{1+x}$
(2) $f(x)=\left(e^{x}\right)^{2}$

- $f(x)=\sin \left(2 x^{3}\right)$
- $f(x)=\cos ^{2} x$
- $f(x)=\ln \frac{1+x}{1-x}$
- $f(x)=\frac{1}{\left(1+x^{2}\right)(1+x)}$

Note: You do not need to take any derivatives. You can reduce them all to other Maclaurin series you know.

Arctan

(1) Write the function

$$
f(x)=\arctan x
$$

as a power series centered at 0 .
Hint: Compute the first derivative. Then stop to think.
(2) What is $f^{(2019)}(0)$?

Maclaurin series and derivatives at 0

Let f be an analytic function defined on some interval centred at 0 . We define a new function g via the equation $g(x)=f\left(x^{2}\right)$.

Find $g^{(n)}(0)$ in terms of the derivatives of f at 0 .
Hint: Write a Maclaurin series for g in two different ways.

Review: what's wrong with the following computation?

Let us find the Taylor series for $\cos (x)$ with the Taylor series for $\sin (x)$. We know $\cos (x)=\int \sin (x) d x$ so:

$$
\begin{aligned}
\cos (x) & =\int \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} d x \\
& =\sum_{n=0}^{\infty} \int \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+2}}{(2 n+2)!}
\end{aligned}
$$

Fix this computation.

Add these series

- $\sum_{n=2}^{\infty} \frac{(-2)^{n}}{(2 n+1)!}$
($\sum_{n=0}^{\infty}(4 n+1) x^{4 n+2}$
- $\sum_{n=0}^{\infty} \frac{2^{n}}{(2 n)!}$
- $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!(n+1)}$

Add these series

- $\sum_{n=2}^{\infty} \frac{(-2)^{n}}{(2 n+1)!}$

Hint: Think of sin
($\sum_{n=0}^{\infty}(4 n+1) x^{4 n+2}$
Hint: $\frac{d}{d x}\left[x^{4 n+1}\right]=? ? ?$

- $\sum_{n=0}^{\infty} \frac{2^{n}}{(2 n)!}$

Hint: Write the first few terms. Combine e^{x} and e^{-x}

- $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!(n+1)}$

Hint: Integrate

Limits

Compute these limits by writing out the first few terms of the Maclaurin series of numerator and denominator:
(1) $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$
(2) $\lim _{x \rightarrow 0} \frac{6 \sin x-6 x+x^{3}}{x^{5}}$
©

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1+\frac{1}{2} x \sin (x)}{\ln (1+x)^{4}}
$$

