- Topic: Taylor series and applications
- Homework: Study for the exam!

Lagrange's Remainder Theorem

Suppose f is C^{n+1} on some interval I containing a. Let P_n be the n^{th} Taylor Polynomial of f at a. Consider $R_n(x) = f(x) - P_n(x)$ the remainder, then for any $x \in I$, there exists ξ between a and x s.t.

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$$

Notice that ξ depends on n and x.

We will now show that sin(x) is analytic on \mathbb{R} . To show a function f is analytic on some D we need to show that f is analytic on each point $a \in \mathbb{D}$. This in turn means that the Taylor series of f centred at a converges to f in a small neighbourhood of a.

We will call $S_a(x)$ the Taylor series for sin(x) centred around *a*. We will call $P_{n,a}(x)$ the n^{th} Taylor polynomial for sin(x) centred around *a*.

1. We will show that for any $a, x \in \mathbb{R}$, $S_a(x)$ converges to sin(x). In other words, the small neighbourhood around each a for which S_a converges to f can in fact be taken to be all of \mathbb{R} . Use Lagrange's Theorem to write down an expression for the remainder $R_{n,a}(x) = f(x) - P_{n,a}(x)$

2. Show that
$$\lim_{n\to\infty} R_{n,a}(x) = 0$$
.

This of course means sin(x) is analytic on \mathbb{R} .

Warm-up: Taylor series gymnastics

Write the following functions in a way where you can easily find their Maclaurin series using series you already know.

•
$$f(x) = \frac{x^2}{1+x}$$

• $f(x) = (e^x)^2$
• $f(x) = \sin(2x^3)$
• $f(x) = \sin(2x^3)$
• $f(x) = \cos^2 x$
• $f(x) = \ln \frac{1+x}{1-x}$
• $f(x) = \frac{1}{(1+x^2)(1+x)}$

Note: You do not need to take any derivatives. You can reduce them all to other Maclaurin series you know.

• Write the function

$$f(x) = \arctan x$$

as a power series centered at 0. *Hint:* Compute the first derivative. Then stop to think.

2 What is $f^{(2019)}(0)$?

- Let f be an analytic function defined on some interval centred at 0. We define a new function g via the equation $g(x) = f(x^2)$.
- Find $g^{(n)}(0)$ in terms of the derivatives of f at 0.
- Hint: Write a Maclaurin series for g in two different ways.

Review: what's wrong with the following computation?

Let us find the Taylor series for cos(x) with the Taylor series for sin(x). We know $cos(x) = \int sin(x)dx$ so:

$$\cos(x) = \int \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} dx$$
$$= \sum_{n=0}^{\infty} \int \frac{(-1)^n x^{2n+1}}{(2n+1)!} dx$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{(2n+2)!}$$

Fix this computation.

Add these series

$$\sum_{n=2}^{\infty} \frac{(-2)^n}{(2n+1)!}$$

2
$$\sum_{n=0}^{\infty} (4n+1)x^{4n+2}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{(2n)!}$$

•
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!(n+1)}$$

Add these series

$$\sum_{n=2}^{\infty} \frac{(-2)^n}{(2n+1)!}$$

Hint: Think of sin

$$\sum_{n=0}^{\infty} (4n+1)x^{4n+2} \qquad \qquad \text{Hint: } \frac{d}{dx} \left[x^{4n+1} \right] = ???$$

Hint: Write the first few terms. Combine e^x and e^{-x}

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!(n+1)}$$

Hint: Integrate

Compute these limits by writing out the first few terms of the Maclaurin series of numerator and denominator: